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Impervious Surface Mapping Using Robust Depth 
Minimum Vector Variance Regression 
 
By Dyah E. Herwindiati1, Janson Hendryli1, Lely Hiryanto1 
 
 

Abstract 
This paper proposes a reliable minimum vector variance regression algorithm for robust supervised 
impervious mapping.The mapping is done with a conventional two phase process; training and 
mapping process. The outcome of training process is the robust regression models  useful for the 
knowledge base of mapping  land cover.  The robust regression model is built from the existing 
robust depth minimum vector variance subsample. The case of research is a metropolitan area 
consisting of megacities surrounding Jakarta, Jabodetabek. The urban population in the Jabodetabek 
area is very high. The urbanization is closely related to the percentage of impervious area and 
indicates the quality of the environment. The evaluation mapping provides that the robust depth 
minimum vector variance regression is an effective method for the impervious land cover mapping 
of Jabodetabek. 

 
Keywords: depth function, impervious, minimum vector variance, robust 
 
1. Introduction 
 

An impervious surface is defined as a surface which cannot be infiltrated by 
water, primarily associated with buildings, rooftops, paved roads, and parking lots (Yuan 
& Bauer, 2007).One of the key indicators in assessing urban environments is the 
impervious surface area in the region (Lu & Weng, 2006). According to Stankowski 
(1972) and Arnold & Gibbons (1996), the population growth and urbanization is closely 
related to the percentage of impervious area and indicates the quality of the environment. 
Furthermore, the increase of impervious surface area can also indicate the transition 
from agricultural land (Tsutsumida, Comber, Barrett, Saizen, & Rustiadi, 2016). 
This paper proposes a reliable robust minimum vector variance regression algorithm for 
supervised impervious land cover mapping. The land cover mapping is conducted in two 
processes: the training and mapping process. The objective of the training process is to 
build the robust regression model for the knowledge base of land cover mapping. To 
conduct the training process, the robust depth minimum vector variance algorithm is 
applied to define a subsample of robust regression. The advantage of a depth function is 
does not require any matrix inversion. The  function only needs a computation of a 
symmetric matrix determinant, consequently its computational time is highly reduced 
(Djauhari& Umbara, 2007; Herwindiati et al., 2013). 
The main purpose of the robust regression is to provide resistant (stable) results in the 
presence of outliers (Rousseeuw & Leroy, 1987). In this paper, we discuss an effective 
and efficient robust regression algorithm based on the existing robust subsample 
providing the minimum vector variance dispersion using the depth function. The 
responses of the model are the limited multi-dependent variables associated with the 
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category of land covers. A limited dependent variable is defined as a dependent variable 
whose range is substantively restricted (Baum, 2013). The outcome of the training 
process is the three regression models associated with the three land cover categories 
which are impervious, water, and green land. 
The mapping process is organized by the outcome of the training process. The good 
performance of the regression model will produce good land cover mapping. The 
mapping result of the Jabodetabek megacities illustrates the real condition. The 
evaluation of the mapping results is done at the end of the discussion. Regarding the 
evaluation, the robust depth minimum vector variance regression is found to be reliable 
and can be considered for classifying and mapping the impervious surface from a 
satellite imagery. 
 
2. The Case Study of the Research 
 

The case study of this research is the multispectral imaging from Landsat 8 
satellite of the Jabodetabek area. The Jabodetabek is a metropolitan area consisting of 
megacities surrounding Jakarta, the capital city of Indonesia (Fig. 1). The surrounding 
cities are Bogor, Depok, Tangerang, and Bekasi. The area is the political and economic 
center of the country which has a total area of 6,659 square kilometers with 27.2 million 
of people (Tsutsumida et al., 2016; Hudalah & Firman, 2012).  Moreover, approximately 
20% of  Indonesia's urban population is in the Jabodetabek area (Guilmoto & Jones, 
2015), and in the Jakarta alone, the population density in 2010 was around 14,469 people 
per square kilometers (Central Bureau of Statistics, n.d). 
The dramatical rise of the urban population in the region since the 1980s (Hudalah & 
Firman, 2012) lacks sufficient urban planning which leads to uncontrolled land use 
conversion. One of the devastating effects of such conversion is the routine flooding of 
Jakarta. Study of Jones & Douglass (2008) reports that 80-90% of wetland areas in the 
North Jakarta have been converted into the impervious land which causes the flood even 
in the dry season when the sea tide is high. Furthermore, the area of Jabodetabek has a 
bowl-like landscape such that the water from the surrounding areas flows to the sea in 
the north area of Jakarta. In the rainy season, the water from thesurrounding area flows 
to Jakarta causing massive floods in the city.The severe floods in Jakarta lately can also 
be attributed to the deforestation and rapid development of housing, shopping malls, 
and business districts in the Bodetabek area which, in the past, acted as the absorption 
area.Therefore, a mapping of the impervious surface area is needed in the future urban 
and suburban development planning in the region. 
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Figure 1. The Jabodetabek Area (source: Google Maps) 
 
Surfaces are anthropogenic features which can be hard to detect because of the 
complexity of urban landscapes (Lu & Weng, 2006). Some methods can be employed to 
map the surface, such as ground surveys, aerial photos, and satellite remote sensing 
(Stocker, 1998). Particularly, the studies of Ji & Jensen (1999) demonstrated the 
advantages of remote sensing technology to classify the impervious surface area. The 
remote sensing method utilizes satellite imagery which can cover a large area in a single 
spectral image, albeit at lower spatial resolution. 
The Landsat 8 is the latest satellite from the Landsat program which launched on 
February 11, 2013, and the imagery can be obtained freely from the GloVis or the 
EarthExplorer website. The satellite is equipped with two sensors: the Operational Land 
Imager (OLI) with nine spectral bands of visual, near-infrared, and shortwave infrared; 
and the Thermal InfraRed Sensor (TIRS) (Rozenstein, Qin, Derimian, & Karnieli, 2014; 
Roy et al., 2014). Table 1 shows the detail of the OLI sensors. The second to the seventh 
spectral band are consistent with the previous Landsat satellites sensors, while the new 
coastal / aerosol and cirrus bands provide new data for detecting water and high thin 
clouds. 
 
3. Robust Minimum Vector Variance (MVV) and Minimum Covariance 
Determinant (MCD) 
 

Minimum covariance determinant (MCD) is a famous robust measure proposed 
by Rousseeuw (1985). The measure uses the minimizing of multivariate dispersion, 
which is called covariance determinant, to compute the robust estimator. The application 
of the MCD was limited to a few hundred objects in a few dimensions.The Fast 
Minimum Covariance Determinant (FMCD) was proposed by Rousseeuw & van 
Driessen (1999) to improve the MCD performance.  
The FMCD estimator is a highly robust estimator of multivariate location and scatter. 
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The FMCD is an impressive robust algorithm, but it has several problems caused by the 
characteristics of covariance determinant. The first problem is that the covariance 
determinant becomes zero if at least one variable has zero variance or if at least one 
variable is a linear combination of the other variables. The second problem is that the 
covariance determinant requires the covariance matrix to be nonsingular. 
Herwindiati et.al (2007) proposed the Minimum Vector Variance (MVV) to solve the 
FMCD problem. MVV is generated from the vector variance multivariate dispersion. 
The MVV does not require the covariance matrix to be nonsingular. In addition to that, 
compared to the FMCD algorithm, the MVV algorithm has a lower computational 
complexity. 
Geometrically, vector variance is the square of the length of the diagonal of a 
parallelotope generated by all principal components of ܺ. Suppose ܺ is a random vector 
and ߑ is the covariance matrix. If ߣଵ ≥ ଶߣ ≥ ⋯ ≥ ߣ ≥ 0 are the eigenvalues of ߑ of 
size  ×  :then , 
Covariance determinant = |ߣ = |ߑଵ × ଶߣ × … ×     ߣ 
 (1) 
Vector variance = ܶݎ(ߑଶ) = ߣଵଶ + ଶଶߣ + ⋯ + ଶߣ      (2) 
The computational complexity of vector variance is of order ܱ(ଶ). On the other hand, 
based on Cholesky decomposition for a large value of , the number of operations in the 
computation of covariance determinant is  + ) − 1) + ) − 1) ∑ ) − ݅ −ୀଵ1)( − ݅) which is of order ܱ(ଷ). 
Suppose ெܶ and ܵெ are the MVV estimators for location parameters and 
covariance matrix. Let random samples ଵܺ, ܺଶ, … , ܺ from -variate distribution of 
location parameter ߤ and a positive definite covariance matrix ߑ. The MVV estimators 
for location parameters and covariance matrix are defined as the pair ( ெܶ, ܵெ) 

minimizing ܶݎ(ܵெଶ ) among all possible ℎ = ାାଵଶ  sets ܪ, where ெܶ = ଵ ∑ ܺ∈ு , ܵெ = ଵ ∑ ( ܺ − ெܶ)( ܺ − ெܶ)௧∈ு , and ܶݎ(ܵெଶ ) = ଵଵଶݏ + ଶଶଶݏ + ⋯ + ଶݏ +2 ∑ ∑ ଶஷୀଵݏ  (see Herwindiati et al. (2007)). 
 
4. The Algorithm of Robust Depth Minimum Vector Variance for Determining 
the Regression Subsample 
 

The supervised impervious mapping is done with a conventional two-phase 
processes: the training process and the image cell classification. The objective of the 
training process is to build the robust regression model for the knowledge base of land 
cover mapping. To conduct the training process, the algorithm of robust depth 
minimum vector is applied to define a subsample of regression. 
Robust regression is an important tool for analyzing data that are contaminated by 
outliers. The main purpose of robust regression is to provide resistant (stable) results in 
the presence of outliers (Rousseeuw & Leroy, 1987). In this paper, we discuss the 
algorithm of robust regression subsample based on the existing subsample of robust 
depth minimum vector variance. 
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Herwindiati et al. (2013) proposed the robust depth minimum vector variance to 
estimate multivariate location-scale parameters using minimum vector variance 
dispersion and the depth function. The method is valuable for the computation of a large 
dataset. 
The depth function |ܯ| is proposed by Djauhari & Umbara (2007). The function is 
equivalent to the Mahalanobis depth for reducing the level of complexity of the FMCD 
and MVV. An advantage of |ܯ| as a measure of depth is that the measure does not 
need any matrix inversion in its computation. 
Let ଵܺ, ܺଶ, … , ܺ be a random sample from -variate distribution where the second 
moment exists. The sample mean vector and sample covariance matrix are, respectively, തܺ = ଵ ∑ ܺୀଵ          (3) ܵ = ଵିଵ ∑ ( ܺ −  തܺ)( ܺ − തܺ)௧ୀଵ       (4) 

The sample version of the Mahalanobis depth of ܺ is defined as: ܦܯ = ଵଵା(ିത)ௌషభ (ିത) = ଵଵାௗమ      (5) 

where ݀ଶ is the Mahalanobis distance. 
We see that the denominator of ܦܯ is the Mahalanobis distance, so we need the 
inversion of the sample covariance matrix ܵ. The computational complexity of the 
inversion is high. To address the problem, Djauhari & Umbara (2007) introduced a new 
depth function ܯ which is less complicated than the Mahalanobis depth. ܯ =  1 ( ܺ − തܺ)௧( ܺ − തܺ) ܵ ൨       (6) 

A matrix of size ( + 1)  × )  + 1) is associated with ଵܺ, ܺଶ, … , ܺ. If |ܵ| and |ܯ| are 
the determinant of ܵ and ܯ respectively, then ܦܯ = |ௌ|ଶ |ௌ|ି|ெ|        (7) 

We see that ܦܯ ≤ |ܵ|  if and only if ൫2ܦܯ − ൯ܯ ≤ (2 |ܵ| −  ܦܯ | andܯ|(ܯ
define the same multivariate ordering. The advantage of this depth function is that it 
does not require any matrix inversion. Its only calculation is the computation of the 
determinant of a symmetric matrix which consequently reduced the computational time. 
The basic idea of the procedure to determine the robust subsample is to identify the 

subsample containing ℎ = ାାଵଶ  of the observations that are associated with the 
smallest vector variance. This is equivalent to finding the robust subsample with the 
minimum vector variance dispersion using the depth function. 
The algorithm of the robust depth minimum vector variance is described as follows: 
1. Assume a dataset of -variate observations { ଵܺ, ܺଶ, … , ܺ}. 

2. Let ܪ ⊂ {1, 2, … , ݊} with |ܪ| = ℎ and ℎ = ቂାାଵଶ ቃ. 
3. Compute the mean vector തܺுబ  and covariance matrix ܵுబ  of ܪ. 

4. Compute ܯ =  1 ( ܺ − തܺ)௧( ܺ − തܺ) ܵ ൨ for ݅ = 1, 2, … , ݊. 

5. Sort ܯ in decreasing order, ܯగ(ଵ) ≥ గ(ଶ)ܯ ≥ ⋯ ≥  .గ()ܯ
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6. Define ܪௐ = ൛ܺగ(ଵ), ܺగ(ଶ), … , ܺగ()ൟ. 
7. Calculate the new mean vector തܺுೈ  and covariance matrix ܵுೈ  of ܪௐ. 
8. If ܶݎ൫ܵுೈଶ ൯ = 0, the process is stopped. If ܶݎ൫ܵுೈଶ ൯ ≠ ுబଶܵ)ݎܶ ), repeat steps 2 – 8. 

The process is continued until the ݇-th iteration or if ܶݎ൫ܵଶ൯ − ൫ܵାଵଶݎܶ ൯ ≤ ߳ where ߳ 
is a small constant. 
9. Let ܶ and ܯ be the location and covariance matrix given by that process. The 
subsample of robust depth minimum vector variance is defined as subset ܪௐ =൛ܺగ(ଵ), ܺగ(ଶ), … , ܺగ()ൟ of ܶ and ܵ. 
An illustration of robust subsample is described in Fig. 2 and Fig. 3. Consider a dataset { ଵܺ, ܺଶ, … , ܺ} of -variate observations. Let ܪଵ ⊂ {1, 2, … , ݊} with |ܪଵ| = ℎ, ଵܶ = ଵ ∑ ∈ுభݔ  and ଵܵ = ଵ ∑ ݔ) − ଵܶ)(ݔ − ଵܶ)′∈ுభ . The subsample of robust depth 

minimum vector variance is defined as subset ܪௐ = ൛ܺగ(ଵ), ܺగ(ଶ), … , ܺగ()ൟ 
minimizing vector variance. 
 

 
(a) 

 
(b) 

Figure 2. The scatter of: (a) original dataset { ଵܺ, ܺଶ, … , ܺ}; (b) the subset data ܪௐ = ൛ܺగ(ଵ), ܺగ(ଶ), … , ܺగ()ൟ 
 
5. Robust Depth Minimum Vector Variance Regression Using Limited Multi-
Dependent Variable 
 

In this section, we discuss an effective and efficient robust regression algorithm 
using a limited multi-dependent variable for classification and mapping of three types of 
land cover: impervious, water, and green land. 
Basically, a limited dependent variable is a dummy variable for dependent variable or 
response. A dummy variable is an artificial variable created to represent an attribute with 
two or more categorical representation. A limited dependent variable, ܻ, is defined as a 
dependent variable whose range is substantively restricted (Baum, 2013). In the common 
case, a limited dependent variable is defined as a binary response model, coded as a 
dummy variable, ܻ ∈ {0, 1}. 
The three categorical land covers will be represented by limited multi-dependent variable ଵܻ, ଶܻ, and ଷܻ. They are taken from the value of either 0 or 1. The value of 0 means that 
the response is zero. Conversely, the value of 1 means that the response has a significant 
value. Assume ଵܻ is impervious defined as (1, 0, 0), ଶܻ is water defined as (0, 1, 0), and 
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ଷܻ is the green land defined as (0, 0, 1). Overall, the limited multi-dependent variable for 
the three land covers can be seen in Table 2. 
 
Table 2. The Limited Multi Dependent for Three Types of Land Covers 

Category of Land Cover ࢅ ࢅ  ࢅ
Impervious 1 0 0⋮ ⋮ ⋮ ⋮
Impervious 1 0 0

Water 0 1 0⋮ ⋮ ⋮ ⋮
Water 0 1 0

Green Land 0 0 1⋮ ⋮ ⋮ ⋮
Green Land 0 0 1

 
The estimation of robust regression model is started from the simple description as 
follows: assume the general model for the ݅-th observation (݅ = 1, 2, … , ݊ோ), -variates, 
and the ݇-th categorical (݇ = 1, 2, 3), which can be formulated as: ݕ = ܾଵݔଵ + ܾଶݔଶ + ⋯ + ܾݔ + ݁      (8) 
where 

ܺ = ൦ ଵଵݔ ଵଶݔଶଵݔ ଶଶݔ … …ଵݔ :ଶݔ ଵೃݔ: ଶೃݔ : :… ೃݔ
൪;   Ԧ݁ = ൦ ݁ଵ݁ଶ:݁ೃ

൪; and   ሬܾԦ = ൦ܾଵܾଶ:ܾ൪ 

with ݊ோ is the subsample of robust. 

The limited multi-dependent variable is ݕԦ = ,ଵݕൣ ,ଶݕ … , ೃ൧்ݕ
for ݇ = 1, 2, 3. The 

estimator of regression coefficient for each of the ݇-th land cover categorical (݇ =1, 2, 3) is:  ሬܾԦ = (ܺᇱܺ)ିଵܺᇱݕԦ     (9) 
 
6. The Training and Mapping Process 
 
6.1 The Training Process 

The case study is the megacities surrounding Jakarta,i.e. Jakarta, Bogor, Depok, 
Tangerang, and Bekasi (Jabodetabek). The training data are acquired from the Landsat 8 
satellite imagery and consist of pixels of the impervious, water and green areas. We 
determine the locations of those areas from visual inspection, and the coordinates can be 
obtained from the Google Maps. The pixels of the locations are located in the Landsat 8 
images by cropping the longitude and latitude coordinates of the corresponding area. 
The procedures of training process are as follows: 
a. Crop the images of impervious, water, and green area in size (ܽ ×  ܽ) pixels based on the 
longitude and latitude coordinates of the corresponding area. 
b. Assume that the dataset of -variate pixels as training data (input). 
c. Define the robust subsample for building the regression model. 
d. Estimate the robust depth minimum vector variance regression. 
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Figure 4. The multispectral Landsat 8 satellite image of Jabodetabek (2016) for channel 1, 4, and 6. 
 
The robust regression using the limited dependent variable will be estimated based on 
the robust subsample ݊ோ. The model estimation cannot be interpreted as the change in 
response ݕ given one unit increased of ݔ because of ݕ ∈ {0, 1}. The output of the 
training process is three robust regression models of three land cover; i.e. ݕ for 
impervious, ݕ௪௧ for water, and ݕ for green area. ݕ = ଵݔ10.9178− + ଶݔ11.1564 − ଷݔ8.6365 + ସݔ11.0898 + ହݔ0.9105 + ݔ0.6169 − ࢚࢘࢝࢟  (10)ݔ2.7454 = . ࢞ −  . ૡૡ࢞ + . ૡ࢞ − . ૡૢ࢞ −  . ૢ࢞ + . ࢞ −  . ࢞ૠ (11) ࢘ࢍ࢟ = . ૡ࢞ −  . ૡૠ࢞ + . ࢞ −  ૡ. ૡૢૡ࢞ + . ૠ࢞ −  . ૢ࢞ + . ૢ࢞ૠ (12) 
 
6.2 The Mapping Process 

The robust regression models are the potential measure for classification or 
mapping of land covers. Assuming ଵܶ, ଶܶ, … , ܶ are the pixels of Jabodetabek area 
having -variates, the mapping of the land covers are conducted by three regression 
models on each pixel ܶ , ݆ = 1, 2, … , ݊. Each pixel is classified into one of the three 
classes based on the value of the regression models (ݕ;  ). The pixel of ܶݕ ;௪௧ݕ
is classified as the impervious land if ݕ() is the greatest value among the others. Fig. 
5 displays the result of the land cover mapping. The impervious area is labeled with red 
color, purple for the water area, and green area is represented by green color. Table 3 
shows the percentages of impervious and non-impervious area in Jabodetabek (2016). 
 
Table 3. Percentages of impervious and non-impervious area in Jakarta, Bogor, Depok, 
Tangerang, and Bekasi (Jabodetabek) in 2016. 

City % Impervious % Non-Impervious 
Jakarta 93.94156959 6.05843041 
Bogor 56.18744292 43.8125571 
Depok 94.08056075 5.91943925 
Tangerang 85.37760712 14.6223929 
Bekasi 86.84936621 13.1506338 
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7. Evaluation 
 

An evaluation process is needed to evaluate whether the mapping provides a 
reliable result. The evaluation will be conducted on the impervious surface in Jakarta and 
green land in Bogor. To perform this process, we use the Google Earth and our ground 
truth data. The results of the evaluation is shown in Fig. 6 and Fig. 7. The percentage of 
impervious area in Jakarta city is very high, mainly due to the construction of mass rail 
transport (MRT) in the area. The figures provide good evidence that the robust depth 
minimum vector variance regression is a reliable method that can be considered for 
classifying and mapping the impervious surface from a satellite imagery. 
 

 
(A = Jakarta; B = Tangerang; C = Bekasi; D = Depok; E = Bogor) 

Figure 5. The mapping of impervious and non-impervious area in Jabodetabek (2016). The impervious area is 
labeled with red color, water area is purple, and green for the green area. 
 
 
 

 
Figure 6. The evaluation of impervious surface, Jakarta-Jembatan Lima (2016). 
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Figure 7. The evaluation of green land, Bogor-Puncak (2016). 
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