### **ICET2013**

by Fakultas Teknik

**Submission date:** 06-Dec-2019 12:06PM (UTC+0700)

**Submission ID:** 1228355337

**File name:** Prosiding\_1st\_ICET2013\_Cooling\_Effect\_of\_Capillaryyy.pdf (888.78K)

Word count: 2001

Character count: 10544



ISBN: 978-979-99723-9-2

## **PROCEEDINGS**

B.1.7

1<sup>St</sup> International Conference on Engineering of Tarumanagara

"Urban Engineering for Future Generation"

Jakarta, 2-3 October 2013

Faculty of Engineering Tarumanagara University



Published by:

FACULTY of ENGINEERING, TARUMANAGARA UNIVERSITY
2013





# PROCEEDINGS

1st International Conference on Engineering of Tarumanagara

## "Urban Engineering for Future Generation" Jakarta, 2-3 October 2013

Faculty of Engineering Tarumanagara University Jakarta - INDONESIA



2013 Published by: FACULTY of ENGINEERING, TARUMANAGARA UNIVERSITY



BCI ASIA PRCIFIC SUM T CIMB NIAGA

Summarecon

IMAGECREATOR BOSS PLANNING - ARCHITECTURE

Supported by:

Published by: Faculty of Engineering, Tarumanagara University

PT. SUSANTO CIPTAJAYA

ထ္





PROCEEDINGS
1St International Conference on Engineering of Tarumanagara

#### 1 International Conference on Engineering of Tarumanagara (ICET 2013)

Faculty of Engineering, Tarumanagara University, Jakarta-Indonesia, 2-3 October 2013 ISBN: 978-979-99723-9-2

| ME-23 | Agus Halim, Didi                                                                 | Application For Rough Estimation Of Cutting Force                                                                                                                                              |  |  |  |
|-------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Widya Utama, Jemmy<br>Septiawan                                                  |                                                                                                                                                                                                |  |  |  |
| ME-24 | Sobron Lubis,                                                                    | Effect of Rake Angle in the Turning Process on the                                                                                                                                             |  |  |  |
|       | Rosehan, Denny<br>Handoko                                                        | Surface Roughness of Workpiece AISI 4340 Steel                                                                                                                                                 |  |  |  |
| ME-25 | Muhammad Ade Irfan                                                               | The Split Of Engineering Development To Suppor<br>Engineering, Procurement, Construction, And<br>Commissioning Of Onshore Oil And Gas Receiving<br>Facility (Case Study On Epcc Orf Bukit Tua) |  |  |  |
| ME-26 | Yustiasih<br>Purwaningrum,<br>Medilla Kusriyanto,<br>Lulu Supriyanto             | Joint Properties Of Friction Stir Welded 6063 to<br>Aluminum Alloys With Variation Of Prehea<br>Method                                                                                         |  |  |  |
| ME-27 | I Made Kartika<br>Dhiputra, Numberi<br>Johni Jonatan                             | Experimental Study Characterization Burner Gas<br>Flame Bioethanol Sago Residual                                                                                                               |  |  |  |
| ME-28 | Prantasi Harmi<br>Tjahjanti, Yudho<br>Suryo W.                                   | Comparative Of Factor Effectiveness Disc Brake O<br>Motorcycle Using Single Piston And Double Piston                                                                                           |  |  |  |
| ME-29 | Richard Jonathan Salli,<br>Agustinus Purna<br>Irawan, Danardono<br>A.S.          | Design Of Fifo Pick And Deposit System                                                                                                                                                         |  |  |  |
| ME-30 | Steven Darmawan,<br>Ahmad Indra<br>Siswantara, Budiarso                          | Reynolds Numbers Effects On Vetaity<br>Distribution In Combustion Chamber Inlet Of A<br>Proto X-2 Bioenergy Micro Gas Turbine                                                                  |  |  |  |
| ME-31 | Sofyan Djamil                                                                    | Polymer Matrix Composite Mechanical Properties of Two Types Woven                                                                                                                              |  |  |  |
| ME-32 | Harto Tanujaya                                                                   | Cooling Effect of Capillary Tube for Refrigerator                                                                                                                                              |  |  |  |
| ME-33 | Christian Wijaya,<br>Johan Oscar Ong                                             | Enhancing the Perfomance of Corrugated Panels Inder Blast Loading: Numerical Analysis                                                                                                          |  |  |  |
| ME-34 | Azridjal Aziz,<br>Herisiswanto, Afdhal<br>Kurniawan Mainil                       | Energy Efficient Cold Storage As Hybrid<br>Refrigeration Machine Using Heating Effect Fron<br>Condenser With Hydrocarbon Refrigeran<br>Substituted For R-22                                    |  |  |  |
| UE-01 | Priyendiswara                                                                    | To Promote Jakarta City as one of an excited Tourist Destination in Asia towards the Asian Economic Community (AEC)                                                                            |  |  |  |
| UE-02 | Sylvie Wirawati                                                                  | Innovative Use Wood And Bamboo Use As Renewable Finishing Materials In The Building Application                                                                                                |  |  |  |
| UE-03 | Liong Ju Tjung,<br>Suryono Herlambang,<br>Indah Susilowati,<br>Regina Suryadjaja | After 25 Years of New Town Development in Jakarta Metropolitan Area (JMA) - Profile and Transformation                                                                                         |  |  |  |
| UE-04 | Adiwan Aritenang                                                                 | The Lineage of ICT Development: The Case O<br>Batam Island                                                                                                                                     |  |  |  |

#### International Conference on Engineering of Tarumanagara (ICET 2013)

Faculty of Engineering, Tarumanagara University, Jakarta-Indonesia, 2-3 October 2013 ISBN: 978-979-99723-9-2

| Paper ID | Title<br>Author/Authors                                                                                                                                                       | pp   |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| ME-30    | Comparison Of Turbulence Models On Reynolds Numbers Of A Proto X-2<br>Bioenergy Micro Gas Turbine's Compressor Discharge<br>Steven Darmawan, Ahmad Indra Siswantara, Budiarso |      |  |  |
| ME-31    | Polymer Matrix Composite Mechanical Properties Of Two Types Woven<br>Sofyan Djamil, Sobron Y Lubis, Hartono                                                                   | 1-5  |  |  |
| ME-32    | Cooling Effect of Capillary Tube in Refrigerator  Harto Tanujaya                                                                                                              | 1-5  |  |  |
| ME-33    | Enhancing the Perfomance of Corrugated Panels Under Blast Loading:<br>Numerical Analysis<br>Christian Wijaya, Johan Oscar Ong                                                 |      |  |  |
| ME-34    |                                                                                                                                                                               |      |  |  |
| UE-01    | To Promote Jakarta City as one of an excited Tourist Destination in Asia towards the Asian Economic Community (AEC)  Priyendiswara                                            | 1-8  |  |  |
| UE-02    | Innovative Use Wood And Bamboo Use As Renewable Finishing Materials In The Building Application Sylvie Wirawati                                                               |      |  |  |
| UE-03    | Evaluation Of 25 Years Of Development Of The New Towns In<br>Jabodetabek: Profile<br>Liong Ju Tjung, Suryono Herlambang, Indah Susilowati, Regina Suryadjaja                  | 1-10 |  |  |
| UE-04    | The Lineage Of Ict Development: The Case Of Batam Island Adiwan Aritenang                                                                                                     | 1-5  |  |  |

#### Parallel Session Schedule

| Day/Date Time              |             | Room<br>No | Paper ID                                                  |  |  |
|----------------------------|-------------|------------|-----------------------------------------------------------|--|--|
| Wednesday                  | 13.00-15.00 | 1          | AE-01, AE-06, UE-04, CE-06, CE-19                         |  |  |
| 2 October 2013             | 13.00-15.00 | 2          | 1E-02, 1E-04, 1E-05, 1E-06, 1E-07                         |  |  |
|                            | 13.00-15.00 | 3          | IE-19, IE-21, IE-22, IE-23, ME-07                         |  |  |
|                            | 13.00-15.00 | 4          | ME-10, ME-11, ME-18, ME-20, ME-27, ME-34                  |  |  |
|                            | 15.00-15.30 |            | Coffee Break                                              |  |  |
|                            | 15.30-17.30 | 1          | CE-07, CE-09, CE-11, CE-14, CE-18, ČE-21                  |  |  |
|                            | 15.30-17.30 | 2          | EE-01, EE-02, EE-03, EE-04, EE-06, EE-08                  |  |  |
|                            | 15.30-17.30 | 3          | IE-10, IE-11, IE-12, IE-13, IE-16                         |  |  |
|                            | 15.30-17.30 | - 4        | ME-12, ME-13, ME-17, ME-19, ME-26, ME-33                  |  |  |
| Thursday<br>3 October 2013 | 09.00-12.00 | 1          | AE-02, AE-04, AE-07, AE-08, AE-09, AE-12,<br>AE-14        |  |  |
|                            | 09.00-12.00 | 2          | AE-13, AE-15, CE-03, CE-16, CE-20                         |  |  |
|                            | 09.00-12.00 | 3          | ME-01, ME-16, ME-22, ME-24, ME-29, ME-30,<br>ME-31, ME-32 |  |  |
|                            | 09.00-12.00 | 4          | IE-08, IE-14, IE-15, IE-17, IE-24, UE-01, UE-02,<br>UE-03 |  |  |

Faculty of Engineering, Tarumanagara University, Jakarta-Indonesia, 2-3 October 2013

ISBN: 978-979-99723-9-2

#### COOLING EFFECT OF CAPILLARY TUBE IN REFRIGERATOR

Harto Tanujaya, Richard Christian Chandra

Department of Mechanical Engineering, Faculty of Engineering
Tarumanagara University, Jakarta
e-mail: hart\_tan18@yahoo.com, harto@tarumanagara.ac.id

#### Abstract

Cap 13 ry tube is one of the throttling device in the refrigeration such as a small refrigerator. In this research, the capillary tube is made of a copper tube with internal diameter of 0.0063 m and the length of 0.248 m. Performance of the refrigerator can be influenced by shape and dimension of the capillary tube. Precooling around the capillary tube is expected increase the performance of the refrigerator. Refrigerant 22 is used in the experiment. The highest and lowest of the Coefficient of Performance (COP) of the refrigerator are investigated at position  $F_{11}$  and  $F_{33}$ .

Keywords: Refrigerant 22, refrigeration effect, COP, capillary tube

#### INTRODUCTION

Refrigeration system is used in many applications such as domestic refrigeration, commercial refrigeration, industrial refrigeration and marine refrigeration. Generally, system refrigeration has 4 basic components, evaporator, condenser, expansion, and compressor. Expansion is used adhere on the refrigeration system. Expansion valve usually is used at the big scale refrigeration and the capillary tube is used for the small scale and simple refrigeration.

Generally, capillary tube made of a copper material that is used for refrigerant 22 with diameter of 0.5 to 2 mm, depend on the load of system refrigeration. The length of the capillary tube is also varied. Using capillary tube in the system of refrigeration has some benefit such as the shape of the expansion is very simple and also the cost to operate inexpensive compared with expansion valve.

Precooling of the capillary tube is expected increase of the performance of the refrigerator. Many researchers did the experiment about the replacement of the capillary tube in right place to increase and get more efficient of the performance of refrigerator. Akintunde (2007) did the research about capillary tube with difference shape as helical and serpentine shape using R-134a refrigerant. His results show the performance of the refrigerator is not influenced with the various pitch of the helical capillary tube. It is different with the serpentine capillary tube which is influenced with pitch.

Performance of the helical and serpentine capillaries tubes are influenced by to diameter and high, respectively. The results are indicated that the shape and to mension of the capillary tube can affect of the performance. This research investigate the effect of precooling of capillary tube in refrigerator using R 22 refrigerant.

#### MATERIAL AND METHOD

Vapour compression refrigeration system is a refrigeration simplest cycle. The basic principle of refrigeration is liquid or refrigerant absorb heat when changed from liquid to gas and gases give off heat when changed from gas to liquid. This phenomena is occurred when the gasses compressed and condensed. Vapour compression refrigeration system has four basic components; compressor, evaporator, condenser, and expansion. This research use capillary tube expansion. Compressor is used to compress the vapour refrigerant to increase the pressure of refrigerant in order can be decreased rapidly by

expansion tube. Evaporator and condenser are used to evaporate and condense the refrigerant in the system with absorb and release the heat from environment, respectively. A installation diagram of the refrigeration system is shown in figure 1.



Figure 1. Installation diagram of refrigeration system

The experimental method is used in this research, the temperature of capillary tube is set below the environment temperature of -70 °C. Diameter of the suction and discharge pipes of refrigerant are ½ in with the length 0.3 and 0.8 m, respectively. The inner diameter of the capillary tube is 0.0063 m with the length of 0.248 m. Single cylinder reciprocating compressor type AJ 4461A is used in this research with maximum power of ½ Hp and 300 rpm. The diameter, length, high, and width of the condenser are 3/8 in, 0.294 m, 0.27 m, and 0.143m, respectively. Capacity of the condenser is 1200 m³/h with the amount of the pipe of 30. The high of evaporator is 0.28 m with diameter of pipe ½ in.

Variable area flowmeter is used to measure the discharge flow of the refrigerant with capacity maximum of 0-140 litre/h. Conversion table of the discharge flow using the flowmeter is shown at table 1.

Table 1. Conversion table of Refrigerant 22

| Density R-22 (kg/m <sup>3</sup> ) | Coefficient Conversion |  |
|-----------------------------------|------------------------|--|
| 750                               | 0,850                  |  |
| 800                               | 0,880                  |  |
| 850                               | 0,910                  |  |
| 900                               | 0,940                  |  |
| 950                               | 0,970                  |  |
| 1000                              | 1,000                  |  |
| 1050                              | 1,028                  |  |
| 1100                              | 1,056                  |  |
| 1150                              | 1,084                  |  |
| 1200                              | 1,111                  |  |
| 1250                              | 1,139                  |  |
| 1300                              | 1,166                  |  |

Flowrate of the air which are blow into the evaporator and condenser are variated. Velocity of the air are variated with three stage of each evaporator and condenser. Description of each stage is  $F_{11}$ ,  $F_{12}$ ,  $F_{13}$ ,  $F_{21}$ ,  $F_{22}$ ,  $F_{23}$ ,  $F_{31}$ ,  $F_{32}$ ,  $F_{33}$ .

 $F_{11}$ : fan velocity 1 in evaporator and fan velocity 1 in condenser  $F_{12}$ : fan velocity 1 in evaporator and fan velocity 2 in condenser  $F_{13}$ : fan velocity 1 in evaporator and fan velocity 3 in condenser  $F_{21}$ : fan velocity 2 in evaporator and fan velocity 1 in condenser  $F_{22}$ : fan velocity 2 in evaporator and fan velocity 2 in condenser  $F_{23}$ : fan velocity 2 in evaporator and fan velocity 3 in condenser  $F_{23}$ : fan velocity 2 in evaporator and fan velocity 3 in condenser

 $F_{31}$ : fan velocity 3 in evaporator and fan velocity 1 in condenser

 $F_{32}$ : fan velocity 3 in evaporator and fan velocity 2 in condenser

F<sub>33</sub>: fan velocity 3 in evaporator and fan velocity 3 in condenser

#### RESULTS AND DISCUSSION

In this experiment, we investigate the efficiency of refrigerator using extreme condition of temperature of capillary tube. Temperature and pressure of each condition are record and evaluation. Results of the experimental can be shown at the tabel 2.

Table 2. Results

|                 | Compression<br>Work<br>(W) – kJ/m <sup>3</sup> | Compression<br>Power<br>(P) - kW | Refrigeration<br>Effect<br>(q <sub>e</sub> ) – kJ/m <sup>3</sup> | Q <sub>e</sub><br>kW | Q <sub>e</sub><br>kW | Qcap tube | COP   |
|-----------------|------------------------------------------------|----------------------------------|------------------------------------------------------------------|----------------------|----------------------|-----------|-------|
| $F_{11}$        | 22                                             | 0.4748                           | 242                                                              | 5,2224               | -4,5965              | 1,1006    | 10,99 |
| F <sub>12</sub> | 24                                             | 0,5179                           | 242                                                              | 5,2224               | -4,7260              | 1,0143    | 10.08 |
| F <sub>13</sub> | 26                                             | 0,5611                           | 242                                                              | 5,2224               | -4,7692              | 1,0143    | 9,31  |
| F21             | 34                                             | 0,7337                           | 242                                                              | 5,2224               | -4,8555              | 1,1006    | 7,12  |
| F <sub>22</sub> | 41                                             | 0,8848                           | 242                                                              | 5,2224               | -5,0281              | 1.079     | 5,90  |
| F23             | 41                                             | 0,8848                           | 231                                                              | 4,9850               | -5,0066              | 0,8632    | 5,63  |
| F31             | 50                                             | 1,079                            | 234                                                              | 5,0497               | -5,2224              | 0,9064    | 4,68  |
| F <sub>32</sub> | 50                                             | 1,079                            | 240                                                              | 5,1792               | -5,1792              | 1,079     | 4,8   |
| F <sub>33</sub> | 53                                             | 1.1437                           | 241                                                              | 5,2008               | -5,2439              | 1,1006    | 4,55  |

#### Compression Work (W)

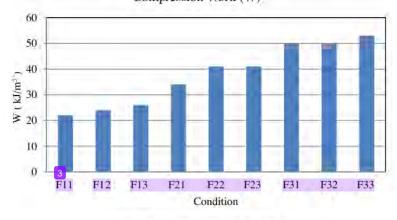



Figure 2. Compression Work

Figure 2 show the graph of work (compressor). The graph shows that position at  $F_{33}$  has a biggest work of compressor of 53 kJ/m<sup>3</sup> compared with position of  $F_{11}$  22 kJ/m<sup>3</sup> which has a lowest work of compressor.

Figure 3 show the compression power of the refrigerator. Compression power is influenced by compression work in the system. This indicates that the compression work will be increased as the result of increasingly the compression power. The power of the lowest and highest of compression power are 0.4748~kW and 1.1437~kW, which are shown at the position of  $F_{11}$  and  $F_{33}$  respectively.

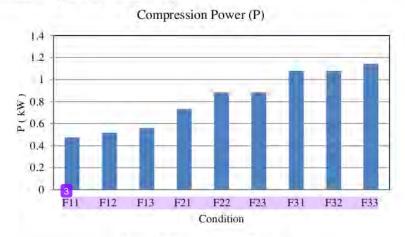



Figure 3. Compression Power

Figure 4 show the refrigeration effect of the refrigerator. Refrigeration effect is one of parameter to calculate the efficiency of refrigerator. Positions of  $F_{11}$ ,  $F_{12}$ ,  $F_{13}$ ,  $F_{21}$ , and  $F_{22}$  have almost similar refrigeration effect of 5.22 kW.

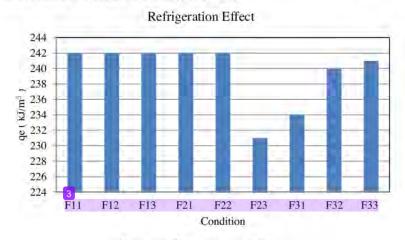



Figure 4. Refrigeration Effect

Figure 5 shows the coefficient of performance (COP) of the refrigerator. The graph show that the lowest and highest COP investigated at the position F<sub>33</sub> and F<sub>11</sub>. COP at F<sub>11</sub>

and  $F_{33}$  are 10.99 and 4.55, respectively. This indicates that the refrigerator at the position of  $F_{11}$  has maximum efficiency.

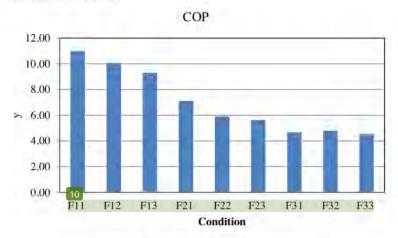



Figure 5. Coefficient of Performance

#### CONCLUSIONS

Compression power increases as the velocity of the fan at evaporator and condenser increases. Refigeration effect has a maximum limitation value for conditioning at low fan rotation of evaporator and condenser. The highest and lowest of Coefficient of performance (COP) are investigated 5 position F<sub>11</sub> and F<sub>33</sub> of 10.99 and 4.55, respectively. This indicates that the conditioning of capillary tube will increase the performance of the refrigerator at lower fan rotation of the evaporator and condenser.

#### REFERENCES

- [1] Akintunde, Mutalubi A, Effect of Coiled Capillary Tube Pitch on Vapour Compression Refrigeration, 2007
- [2] Arismunandar, Wirago, "Penyegaran Udara", PT Pradnya Paramita, Jakarta, 1995
- [3] Jordan, Richard C, "Refrigeration and Air Conditioning", Prentice Hall of India, New Delhi, 1981.
- [4] SMACNA, "HVAC System, Testing, Adjusting, and Balancing", SMACNA Inc, pirginia, 1993.
- [5] Stoecker, W.F., "Refrigeration and Air Conditioning", Mc Graw Hill, New Delhi, 2992.
- [6] System Performance, AU J.T. 11(1): 14-22, July, 2007.

#### **ICET2013**

#### **ORIGINALITY REPORT**

SIMILARITY INDEX

13%

INTERNET SOURCES

9%

**PUBLICATIONS** 

18%

STUDENT PAPERS

#### **PRIMARY SOURCES**

| 1 | Submitted to Universitas Riau |
|---|-------------------------------|
|   | Ctudent Denor                 |

Student Paper

Submitted to Savitribai Phule Pune University

Student Paper

2%

hdl.handle.net

Internet Source

Submitted to Taylor's Education Group 4

Student Paper

Submitted to iGroup 5

Student Paper

Submitted to 7996

Student Paper

www.bvmengineering.ac.in

Internet Source

www.karunya.edu

Internet Source

www.journal.au.edu

Internet Source

| 10 | Csurka, G "Characterizing the Uncertainty of<br>the Fundamental Matrix", Computer Vision and<br>Image Understanding, 199710                                                                                                                                                 | <1% |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 11 | ajouronline.com<br>Internet Source                                                                                                                                                                                                                                          | <1% |
| 12 | journals.sagepub.com Internet Source                                                                                                                                                                                                                                        | <1% |
| 13 | Submitted to University of New South Wales Student Paper                                                                                                                                                                                                                    | <1% |
| 14 | Asyari Daryus, Ahmad Indra Siswantara,<br>Budiarso, Gun Gun R. Gunadi, Hariyotejo<br>Pujowidodo. "CFD simulation of multiphase fluid<br>flow in a two-dimensional gas-solid fluidized bed<br>using two different turbulence models", AIP<br>Publishing, 2019<br>Publication | <1% |
| 15 | hvacsystemarasuga.blogspot.com Internet Source                                                                                                                                                                                                                              | <1% |
| 16 | Submitted to University of Brighton Student Paper                                                                                                                                                                                                                           | <1% |
| 17 | Tanujaya, Harto, and Satoyuki Kawano. "Experimental Study of Vibration of Prototype Auditory Membrane", Applied Mechanics and Materials, 2014. Publication                                                                                                                  | <1% |



## Submitted to School of Business and Management ITB

<1%

Student Paper

Exclude quotes Off Exclude matches Off

Exclude bibliography Off