Table of contents

Volume 84
 Number 4, October 2011

4 Previous issue Next issue -

Open all abstracts

Papers

General physics

J-Matrix approach for the exponential-cosine-screened Coulomb potential
I Nasser, M S Abdelmonem and Afaf Abdel-Hady

+ Open abstractView article

Universal quantum computing with nanowire double quantum dots
Peng Xue

+ Open abstractView article

An analysis of the applications of the modified Kratzer potential
045003
Ali Akbar Babaei-Brojeny and Mojtaba Mokari

+ Open abstract 国 View article 咀 PDFView article
興 PDF

On the photon distribution of the two－mode squeezed chaotic state	045005
Jun Zhou，Hong－yi Fan and Jun Song	
＋Open abstract 國 View article 号 PDF	
Entanglement swapping of a GHZ state via a GHZ－like state	045006
Chia－Wei Tsai and Tzonelih Hwang	
＋Open abstract 國 View article 気 PDF	
Synthetic multicellular oscillatory systems：controlling protein dynamics with genetic circuits	045007
Aneta Koseska，Evgenii Volkov and Jürgen Kurths	
＋Open abstract 國 View article 岛 PDF	
Magnetic operations：a little fuzzy mechanics？	045008
B Mielnik and A Ramírez	
＋Open abstract 國 View article PDF	
Optimization analysis of the performance of an irreversible Ericsson refrigeration cycle in the micro／nanoscale	045009
Hao Wang，Guoxing Wu and Yueming Fu	
＋Open abstract 國 View article（ PDF	
Nonclassical properties of the integrability condition of the time－dependent $\mathrm{SU}(2)$ quantum system	045010
M Sebawe Abdalla and E M Khalil	
＋Open abstract 國 View article 閊 PDF	

Xing Xiao，Mao－Fa Fang and Yan－Min Hu
＋Open abstractView article四 PDF
＋Open abstract 国 View article 四 PDF

Peng Huang，Guangqiang He，Jun Zhu and Guihua Zeng
＋Open abstractView article

Subquantum nonlocal correlations induced by the background random field
Andrei Khrennikov
＋Open abstractView article

```
同 PDF
```

Cryptanalysis of quantum secret sharing based on GHZ states
Xiao－Fen Liu and Ri－Jing Pan
＋Open abstractView article

```
皿 PDF
```

Scalar field reconstruction of power－law entropy－corrected holographic dark energy
Esmaeil Ebrahimi and Ahmad Sheykhi
＋Open abstractView article

```
| PDF
```

The chaotic atom model via a fractal approximation of motion
M Agop，P Nica，S Gurlui，C Focsa，D Magop and Z Borsos
＋Open abstractView article 四 PDFView article皿 PDF

Path integral treatment of the one－dimensional Klein－Gordon oscillator with minimal length
Y Chargui and A Trabelsi
＋Open abstract 国 View article 龱 PDF

Family relationship among power－law multi－term potentials in extra dimensions
045020
N Saikia
＋Open abstract 国 View article PDF

Quantum discord for a central two－qubit system coupled to an $X Y$ spin chain with Dzyaloshinsky－Moriya interaction

Liang Qiu and An Min Wang

＋Open abstractView article

```
| PDF
```

Continuous－time random walk：exact solutions for the probability density function and first two moments
Kwok Sau Fa and Joni Fat
＋Open abstractView article

```
皿 PDF
```

Landau quantization for an electric quadrupole moment
J Lemos de Melo，K Bakke and C Furtado
＋Open abstractView article

Design of a passification controller for uncertain fuzzy Hopfield neural networks with time－varying delays
R Sakthivel，K Mathiyalagan and S Marshal Anthoni
＋Open abstractView article

Julen Larrucea

+ Open abstractView article

Electromagnetism, optics, acoustics, heat transfer, classical mechanics and fluid dynamics
Entropy squeezing of a Jaynes-Cummings atom with the Glauber-Lachs state
Hünkar Kayhan

+ Open abstractView article

An Au buffer layer for the growth of a ZnO sol-gel film on a Si substrate
Yidong Zhang, Guofu Sun, Hongxiao Zhao, Jing Li and Zhi Zheng

+ Open abstractView article
国 PDF

Dynamics of the cavity radiation of a correlated emission laser initially seeded with a thermal light
Sintayehu Tesfa

+ Open abstractView article

Finite difference time domain calculation of three-dimensional phononic band structures using a postprocessing method based on the filter diagonalization

Xiao-Xing Su, Tian-Xue Ma and Yue-Sheng Wang

+ Open abstractView article
PDF

Double-control coherent absorption and transparency in a six-level optical gain medium
Saswata Ghosh and Swapan Mandal

+ Open abstractView article

Physics of gases, plasmas and electric dischargesView article

New findings about sawtooth oscillations in LHCD plasmas on the HT-7 tokamak using tomography of soft x-ray signals
Liqing Xu, Liqun Hu, Erzhong Li, Kaiyun Chen and Zhiyuan Liu
\pm Open abstractView articleParametric excitation of surface electron cyclotron O-modes by an external alternating electric field045503

V O Girka, A V Girka and V V Yarko

+ Open abstract 国 View article PDF

Possibility of a giant scattering enhancement due to wave trapping in a reflectometry experiment
E Gusakov, S Heuraux, M Irzak and A Popov

+ Open abstractView article

```
& PDF
```

Trapping effects in a self-gravitating quantum dusty plasma
M Ayub, H A Shah and M N S Qureshi

+ Open abstractView article \square

Analytical model for electromagnetic radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma
Zi-Yu Chen, Shi Chen, Jia-Kun Dan, Jian-Feng Li and Qi-Xian Peng

+ Open abstractView article

Condensed matter: structural, mechanical and thermal propertiesView article

Effect of substrate temperature on the structural, electrical and optical behaviour of reactively sputtered $\mathrm{Ag}-\mathrm{Cu}-\mathrm{O}$ films
M Hari Prasad Reddy, P Narayana Reddy, B Sreedhar, J F Pierson and S Uthanna

+ Open abstractView article

Thermal expansion and magnetization studies of the novel ferromagnetic shape memory alloy $\mathrm{Ni}_{2} \mathrm{MnGa}_{0.88} \mathrm{Cu}_{0.12}$ in a magnetic field
T Sakon, H Nagashio, K Sasaki, S Susuga, D Numakura, M Abe, K Endo, H Nojiri and T Kanomata

+ Open abstractView article

Condensed matter: electronic structure, electrical, magnetic and optical properties

Characterization of charge transport and electrical properties in disordered organic semiconductors
L G Wang, H W Zhang, X L Tang, Y Q Song, Z Y Zhong and Y X Li

+ Open abstractView article PDF

Effect of Gd^{3+} doping on the structural and magnetic properties of nanocrystalline $\mathrm{Ni}-\mathrm{Cd}$ mixed ferrite
Binu P Jacob, Smitha Thankachan, Sheena Xavier and E M Mohammed

+ Open abstractView article

Optical parameters of ternary $\mathrm{Te}_{15}\left(\mathrm{Se}_{100-x} \mathrm{Bi}_{x}\right)_{85}$ thin films deposited by thermal evaporation
Kameshwar Kumar, Pankaj Sharma, S C Katyal and Nagesh Thakur

+ Open abstractView article

Muonic atom formation using the two-state approximation in different energy regions
Did Herbert Fröhlich predict or postdict the isotope effect in superconductors？ 045705
J E Hirsch
＋Open abstract
View article

```
| PDF
```Superconductivity from strong repulsive interactions in the two－dimensional Hubbard model045706
L G Sarasua
＋Open abstractView article
为 PDF
Interdisciplinary physics and related areas of science and technology
Determination of the optical constants of a vacuum evaporated polythiophene thin film
Sandip V Kamat，Vijaya Puri and R K Puri
＋Open abstract 国 View article 囲 PDF
Implementation of a diffusion－limited aggregation model in the simulation of fractals in PVDF－HFP／PEMA－ \(\mathrm{NH}_{4} \mathrm{CF}_{3} \mathrm{SO}_{3}-\mathrm{Cr}_{2} \mathrm{O}_{3}\) nanocomposite polymer electrolyte films
S Amir，S A Hashim Ali and N S Mohamed
＋Open abstract 国 View article 㬂 PDF
Long－distance pulse propagation on high－frequency dissipative nonlinear transmission lines／resonant tunneling diode line cascaded maps
Yerima Klofaï，B Z Essimbi and D Jäger
＋Open abstractView article PDF

\section*{Geophysics，astronomy and astrophysics}

Ionospheric perturbations associated with two recent major earthquakes（ \(M>5.0\) ）
＋Open abstractView article国 PDF

\section*{Comments on Astrophysics and Cosmology}

\section*{Comment}

Resolved young stellar populations in star－forming regions of the Magellanic Clouds
Dimitrios A Gouliermis
＋Open abstract 国 View article 龱 PDF

\section*{JOURNAL LINKS}

Submit an article
About the journal
Editorial Board
Topical Issues
Author guidelines
Review for this journal
Publication charges

\section*{News and editorial}

Awards
Journal collections
Contact us

\title{
Continuous-time random walk: exact solutions for the probability density function and first two moments
}

\author{
Kwok Sau Fa \({ }^{1}\), Joni Fat \({ }^{2}\) \\ \({ }^{1}\) Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá-PR, Brazil, \\ \({ }^{2}\) Jurusan Teknik Elektro - Fakultas Teknik, Universitas Tarumanagara, Jl. Let. Jend. S. Parman 1, Blok L, Lantai 3 Grogol, Jakarta 11440, Indonesia \\ E-mail: kwok@dfi. uem. br
}

\begin{abstract}
We consider decoupled continuous time random walk model with finite characteristic waiting time and approximate jump length variance. We take the waiting time probability distribution given by a combination of exponential and Mittag-Leffler function. Using this waiting time probability distribution we investigate diffusion behaviors for all the time. We obtain exact solutions for the first two moments and probability distribution for force-free and linear force cases. Due to the finite characteristic waiting time and jump length variance the model presents, for the forcefree case, normal diffusive behavior in the long-time limit. Further, the model can describe anomalous behavior at the intermediate times.
\end{abstract}

PACS numbers: 02.50.-r, 05.10.Gg, 05.40.-a

\section*{1. Introduction}

The continuous-time random walk (CTRW) model [1] was proved a useful tool for the description of systems out of equilibrium [2, 3]. In fact, the CTRW has been used in a wide range of applications such as earthquake modelling [4], random networks [5], self-organized criticality [6], electron tunneling [7], electron transport in nanocrystalline films [8] and financial stock market [9]. However, analyses of diffusion processes are often restricted to a long-time limit. On the other hand, informations about the initial and intermediate processes are important to distinguish different systems which may lead to the same behavior in the long-time limit. Despite some progress in simple CTRW has been made, more novel approaches need to be developed for the description of CTRW with generic waiting time probability density function (PDF) and external force. In the CTRW model, without external force, the PDF obeys the following equation in Fourier-Laplace space:
\[
\begin{equation*}
\rho_{k s}(k, s)=\frac{\left(1-g_{s}(s)\right) \rho_{k \underline{0}}(k)}{s\left(1-\psi_{k s}(k, s)\right)}, \tag{1}
\end{equation*}
\]
where \(\rho_{k 0}(k)\) is the Fourier transform of the initial condition \(\rho_{0}(x), \psi_{k s}(k, s)\) is the Fourier-Laplace transform of the jump \(\operatorname{PDF} \psi(x, t)\) and \(g_{s}(s)\) is the Laplace transform of the waiting time PDF \(g(t)=\int_{-\infty}^{\infty} \mathrm{d} x \psi(x, t)\). The CTRW can be simplified through the decoupled jump PDF \(\psi_{k s}(k, s)=\varphi_{k}(k) g_{s}(s)\) in Fourier-Laplace space, where \(\varphi(x)=\int_{\infty}^{\infty} \mathrm{d} t \psi(x, t)\) is the jump length PDF. Under the case of finite jump length variance \(\int_{-\infty}^{\infty} \mathrm{d} x x^{2} \varphi(x)\) [2], the PDF for CTRW can be given by
\[
\begin{equation*}
\rho_{k s}(k, s)=\frac{\left(1-g_{s}(s)\right) \rho_{k 0}(k)}{s\left(1-\left(\sqrt[1]{\sqrt{\prime}} C k^{2}\right) g_{s}(s)\right)} \tag{2}
\end{equation*}
\]
in Laplace-Fourier space, where \(C\) has a dimension of length and \(\rho_{k 0}(k)\) is the Fourier transform of the initial condition \(\rho_{0}(x)\). Although this equation is valid for a finite jump length variance, anomalous diffusion can be produced by it with appropriate choices of \(g(t)\). However, this equation is not convenient to be used to study diffusion behavior in finite domains and/or in the presence of external forces. In particular, for a long-tailed power-law waiting time \(\operatorname{PDF} g(t) \sim(t / \tau)^{\alpha}\) the fractional diffusion equation can be used to study diffusion [2].

Recently, we have made progress in obtaining an integro-differential diffusion equation for the CTRW with any waiting time PDF and external force \(F(x)\) [10, 11]:
\[
\left.\frac{\partial \rho(x, t)}{\partial t}-{ }_{\Gamma}^{\int_{t}} \mathrm{~d} t{\underset{\sim}{1}}_{t}^{t} \quad t\right) \frac{\partial \rho\left(x, t_{1}\right)}{\partial t_{1}}=C L_{F P} \underline{\partial}^{\int_{1}} \Gamma^{t} \mathrm{~d} t g\left(t{\underset{1}{1}}_{t}^{t} \underset{0}{\rho(x, t),(3)}\right.
\]
where
\[
\begin{equation*}
L_{F P}=-\frac{\partial F(x)}{\partial x} \frac{\partial^{2}}{k_{B} T}+\frac{x^{2}}{\partial x^{2}} \tag{4}
\end{equation*}
\]
\(k_{B}\) is the Boltzmann constant, and \(T\) is the absolute temperature. Some interesting results from (3) are also presented in \([12,13]\). We note that equation (3) can also be obtained by the usage of the subordination process [14].

The aim of this work is to investigate the CTRW model with the waiting time PDF given by a combination of exponential and Mittag-Leffler function. It is well-known that the waiting time PDF, given by a pure exponential function, produces normal diffusion process for all the time. The above-mentioned waiting time PDF permits us to investigate the CTRW model with a combination of exponential and stretched exponential function at small times. In particular, we obtain analytical solutions for the first two moments and PDF for force-free and linear force cases. We show that the model describes, for force-free case, normal diffusion regimes at the small and large times, and anomalous diffusion regimes at the intermediate times; this means that the stretched exponential does not modify the normal diffusion process at small times.
2. Mean square displacement, first two moments and probability distribution

In this work we investigate the CTRW model described by equation (3), using the following waiting time PDF:
\[
\begin{equation*}
g(t)=b+\lambda b^{1-\alpha} e^{-b t} E_{\alpha, 1}\left(-\lambda t^{\alpha}\right), 0<\alpha \leq 1, b>\lambda^{\frac{1}{a}} \tag{5}
\end{equation*}
\]
where \(b\) and \(\lambda\) are positive constants and \(E_{\mu, v}(y)\) is the generalized Mittag-Leffler function defined by [15] \(E_{\mu, v}(y)=\sum_{n=0}^{\infty} y^{n} / \Gamma(v+\mu n), \mu>0, v>0\). The waiting time PDF \(g(t)\) interpolates approximately between the initial exponential form and intermediate power-law behavior, and with exponential behavior in the long-time limit; it is different from the functions employed in the previous works [10, 12, 13]. In those cases the functions are given by a combination of power-law and generalized Mittag-
Leffler function \(g_{1}(t)=\lambda t^{\alpha-1} E_{\alpha, \alpha}\left(-\lambda t^{\alpha}\right)\), a sum of exponentials \(g_{2}(t)=A^{\Sigma_{n=1} c_{i} e^{-a_{i} t}, ~}\) and a combination of power-law and exponential function \(g_{3}(t)=d \gamma t \gamma^{-1} e^{-d t} / \Gamma(\gamma)\), where \(\Gamma(z)\) is the Gamma function; the first one has a power-law tail, then the system exhibits anomalous diffusion in the long-time limit, however, the second one contains multiple characteristic times and it may exhibit power-law behavior with logarithmic oscillation at the intermediate times and exponential behavior in the long-time limit. The third one has approximately initial and intermediate power-law behavior, then the system describes anomalous diffusion at the small and intermediate times, and it exhibits normal diffusion in the long-time limit. In the case of \(g(t)\), it presents a finite characteristic waiting time given by \(0_{0}^{\infty} \mathrm{d} \operatorname{tg}(t)=\left[1+\lambda(1-\alpha) b^{-\alpha}\right] /\left(b+\lambda b^{1-\alpha}\right)\); this means that the system describes normal diffusion in the long-time limit.

The definition of the derivative of the \(q^{t h}\) moment of PDF \(\rho(x, t)\) with respect to \(t\) is:
\[
\begin{align*}
& \frac{\mathrm{d}}{\left\langle x^{q}\right.}=\int_{-\infty}^{\int_{-\infty} x^{q} \frac{\partial \rho(x, t)}{\partial t} \mathrm{~d} x,} \tag{6}\\
& \rangle \mathrm{d} t
\end{align*}
\]
where \(q\) is a positive integer number.
Force-free case. Substituting (3) into (6), we can obtain the first moment
\[
\begin{equation*}
\langle x(t)\rangle=\langle x(0)\rangle \tag{7}
\end{equation*}
\]
and the derivative of the second moment with respect to \(t\)
\[
\left.\frac{\mathrm{d}}{\begin{array}{l}
\left\langle x^{2}(\right. \\
t)\rangle \\
\mathrm{d} t
\end{array}} \begin{array}{c}
-g_{0}(t
\end{array} \quad t\right) \frac{\mathrm{d}}{\left\langle x^{2}(t\right.} \mathrm{d} t_{1}+2 D \underline{\partial}_{\partial t}^{\int_{t}}-g_{1}(t{\underset{0}{1}} t) \mathrm{d} t
\]

Equation (7) shows that the mean square displacement \((x(t)-x(0))^{2}\) is identical to the variance \((x(t)-\langle x(t)\rangle)^{2}\) with \(\langle x(0)\rangle=x(0)\).

In order to obtain the mean square displacement we apply the Laplace transform to (8) and using
\[
g_{s}(s)=\frac{b+\lambda b^{1-\alpha}}{(b+s)+\lambda(b+s)^{1-\alpha}}
\]
we obtain
\[
\begin{equation*}
s x \notin s)_{s-} x^{2}(0)=\frac{2 C\left(b+\lambda b^{1-\alpha}\right)}{(b+s)+\lambda(b+s)^{1-\alpha}-\left(b+\lambda b^{1-\alpha}\right)} . \tag{10}
\end{equation*}
\]

Now, using the binomial expansion to (10) yields
\[
\begin{align*}
& (x(t)-x(0))^{2}=2 C b+\lambda b^{1-\alpha} \\
& \times{ }_{0}^{t} e^{-b u}{ }_{n=0}^{\Sigma} \frac{\left[\left(b+\lambda b^{1-\alpha}\right) u\right]^{n}}{n!} E_{\alpha, 1+(1-\alpha) n}^{(n)}\left(-\lambda u^{\alpha}\right) \mathrm{d} u, \tag{11}
\end{align*}
\]
where
\[
\begin{equation*}
E_{\mu, v}^{(n)}(y)=\frac{d^{n}}{d y} E_{\mu, v}(y)=\sum_{k=0}^{\infty} \frac{(n+k)!y^{k}}{k!\Gamma(v+\alpha(n+k))} . \tag{12}
\end{equation*}
\]

It is noted that equation (11) shows a complicate form, but for \(\alpha=1\) the MittagLeffler function reduces to the exponential function, and the above result reduces to the one of normal diffusion from the ordinary diffusion equation or from the \(i_{2}{ }_{2}\) gro-differential diffusion equation (3) with the exponential waiting time PDF [10], \(\left\langle x^{2}(t)\right\rangle=\left\langle{ }^{2}(0)\right\rangle+2 C(b+\lambda) t\). For short times the mean square displacement is given by
\[
\begin{equation*}
(x(t)-x(0))^{2} \sim 2 C \quad b+\lambda b^{1-\alpha} t \tag{13}
\end{equation*}
\]
and for long times it yields
\[
\begin{equation*}
(x(t)-x(0))^{2} \sim^{b^{\alpha}\left[1+\lambda(1-\alpha) b^{-\alpha}\right]^{2}}+\frac{C \lambda(1-\alpha)\left(1+\lambda b^{-\alpha}\right)}{1+\lambda(1-\alpha) b^{-\alpha} t} . \tag{14}
\end{equation*}
\]

We see that the mean square displacement presents normal diffusive regime for short and large times. In general, the mean square displacement (11) begins with a normal diffusion regime, then it develops anomalous diffusion regime at the intermediate times, and eventually reaches a normal diffusion regime. These regimes can be viewed in figures 1 and 2. In these figures we also compare the analytical solution for the MSD (11) with the power-law function; the MSD is very close to a linear function.

Figure 1. Plots of \((x(t)-x(0))^{2}\) for \(C=1, b=0.3, \lambda=0.15\) and \(\alpha=0.5\). The solid line is obtained from (11). The dashed dotted and dashed lines are the asymptotic curves obtained from (13) and (14), respectively. The dotted line corresponds to the power-law function \(0.1022 t^{0.9415}\).

Figure 2. Plots of \((x(t)-x(0))^{2}\) for \(C=1, b=0.03, \lambda=0.05\) and \(\alpha=0.7\). The solid lines are obtained from (11). The dashed dotted and dashed lines are the asymptotic curves obtained from (13) and (14), respectively. The dotted line corresponds to the power-law function \(0.0935 t^{0.9715}\).

Now we consider the exact solution for the PDF \(\rho(x, t)\). It can be obtained from [10]

Substituting (9) into (15) yields
\[
\begin{equation*}
\rho(x, t)=\frac{1}{2 \pi \overline{C\left(b+\lambda b^{1-\alpha}\right)}} \int_{0}^{\int_{\infty}} \mathrm{d} \omega \Phi(\omega, x) \cos (\omega t+\theta(\omega, x)), \tag{16}
\end{equation*}
\]
where
\[
\begin{align*}
& r_{1}(\omega)=\sqrt{ } \overline{\omega^{2}+b^{2},} \theta_{1}(\omega)=\arccos \begin{array}{l}
\underline{b} \\
r_{1}
\end{array}, \tag{17}\\
& r_{2}(\omega)=\lambda r_{1}^{1-\alpha}(\omega) \\
& x=\frac{b^{1-\alpha}}{\cos \left((1-\alpha) \theta_{1}(\omega)\right)-{r^{1-\alpha}(\omega)}_{1}^{1}+\sin \left((1-\alpha) \theta_{1}(\omega)\right)+\frac{\omega b^{1-\alpha}}{\lambda r_{1}^{1-\alpha}(\omega)}}{ }^{2} \tag{19}
\end{align*}
\]
and
\[
\begin{equation*}
\theta(\omega, x)=\frac{\theta_{2}(\omega)-\pi}{2}-\frac{|x|}{\overline{C\left(b+\lambda b^{1-\alpha}\right)}} \overline{r_{2}(\omega)} \sin \frac{\theta_{2}(\omega)}{2} . \tag{21}
\end{equation*}
\]

The asymptotic expansion of \(\rho(x, t)\) (for a given \(x\) and \(t \gg 1\)) is given by
\[
\begin{equation*}
\rho(x, t) \sim \frac{1}{2} \overline{>} \overline{\frac{1+\lambda(1-\alpha) b^{-\alpha}}{\pi C\left(b+\lambda b^{1-\alpha}\right) t}} . \tag{22}
\end{equation*}
\]

Figure 3. Plots of \(\rho(x, t)\) versus \(x\) coordinate with \(C=1, b=0.03, \alpha=0.5, \lambda=0.15\), for the force-free case.

Equation (22) shows that the \(\operatorname{PDF} \rho(x, t)\) has a decay similar to \(1 /{ }^{\sqrt{t}}\) of the normal diffusion, and independently of the spatial coordinate. This is not a surprise because the waiting time \(\operatorname{PDF}(5)\) has a finite characteristic waiting time.

Now we show the PDF \(\rho(x, t)\) versus \(x\) coordinate for different times. In figure 3a, the PDF presents a cusp for \(t=9\) which is a hallmark of the CTRW model for anomalous diffusion process in \(x\) coordinate; however, the PDF shows a smooth shape for \(t=35\) due to the fact that the system describes normal regime for large times. In figure 3b, the PDF presents a smooth shape due to the normal diffusion regime for short times. It is worth mentioning that equation (16) is difficult to compute numerically for small values of \(x\). In this case we have checked our numerical results obtained from (16) with those of a numerical inversion of Laplace transform algorithm [16]. Both results are similar, except at the short distance.

Linear force. We now study the case of a linear force \(F(x)=-m \omega^{2} x\) with the waiting time PDF (5). We first obtain the PDF \(\rho(x, t)\); it can be obtained from (3). In order to do so, we employ the method of separation of variables \(\rho_{n}(x, t)=X_{n}(x) T_{n}(t)\); substituting it into (3) yields
\[
\begin{equation*}
\frac{\mathrm{d} T_{n}(t)}{\mathrm{d} t}-\int_{-}^{\int_{1}} g_{0}(t \quad t) \frac{\mathrm{d} T_{n}\left(t_{1}\right)}{\mathrm{d} t_{1}} \mathrm{~d} t_{1}=-\mu_{n} \frac{\mathrm{~d}}{\mathrm{~d} t}{ }^{\int} g_{1} g_{1}\left(t{ }_{n} t\right) t_{1} T_{i_{0}}^{(t)} \mathrm{d} t \tag{23}
\end{equation*}
\]
and
\[
\begin{equation*}
C L_{F P} X_{n}(x)=-\mu_{n} X_{n}(x) \tag{24}
\end{equation*}
\]
where \(\mu_{n}\) are the eigenvalues. Then, the solution for \(\rho(x, t)\) is given by the expansion of eigenfunctions
\[
\begin{equation*}
\rho\left(x, t \mid x^{\prime}, 0\right)=e^{\frac{\Phi\left(x^{\prime}\right)}{2} \frac{\Phi(x)}{2} \sum_{n} \psi_{n}\left(x^{\prime}\right) \psi_{n}(x) T_{n}(t), ~} \tag{25}
\end{equation*}
\]
where \(\Phi(x)=V(x) / k_{B} T, V(x)\) is the potential given by \(F(x)=-\mathrm{d} V(x) / \mathrm{d} x\), and \(\psi_{n}(x)=e^{\Phi(x) / 2} X_{n}(x)\). We note that the eigenvalue equation of the operator \(L_{F P}\), (24), is the same as the one of eigenvalue equation of ordinary Fokker-Planck operator [17]. Now, we only need to solve equation (23) that depends only on time. Applying the Laplace transform to (23) yields
\[
\begin{equation*}
T_{s n}(s)=\frac{T_{n}(0)\left[1-g_{s}(s)\right]}{s-(1-n) s g_{s}(s)} . \tag{26}
\end{equation*}
\]

Substituting \(g_{s}(s)\) into (26) we obtain
\[
\begin{align*}
& T_{n}(t)=1-n \quad b+\lambda b^{1-\alpha} \\
& \times \int_{0}^{t} e^{-b u}:_{k_{1}=0}^{\infty} \frac{\left[(1-n)\left(b+\lambda b^{1-\alpha}\right) u\right]^{k^{1}}}{k_{1}!} E_{\alpha, 1+(1-\alpha) k_{1}}^{\left(k_{1}\right)}\left(-\lambda u^{\alpha}\right) \mathrm{d} u, \tag{27}
\end{align*}
\]

Figure 4. Plots of \(\rho(x, t)\) versus \(x\) coordinate with \(C=1, b=0.03, \alpha=0.5, \lambda=0.15\), for the linear force case.
where we have omitted the term \(T_{n}(0)\). Then, the solution for \(\rho\left(x, t \mid x^{\prime}, 0\right)\) is given by
where \(\bar{x}=x \overline{m \omega^{2} /\left(k_{B} T\right)}, C=k_{B} T / m \omega^{2}, \mu_{n}=n\) and \(H_{n}(y)\) denotes the Hermite polynomials. It is worth mentioning that \(T_{n}(t)\) reduces to \(T_{n}(t)=\exp [-(a+\lambda) n t]\) for \(\alpha=1\), which is the solution of the ordinary diffusion equation. In figure 4 we show the PDF for different times.

To obtain the first two moments we substitute (3) into (6), and we obtain the derivative of the first moment of \(\operatorname{PDF} \rho(x, t)\) with respect to \(t\)
\[
\begin{align*}
& \left.\frac{\mathrm{d}\langle x(t)\rangle}{(t \mathrm{~d} t}=\int_{0}^{\int_{t}} g-t_{1}\right) \frac{\mathrm{d}\langle x(t)\rangle}{\mathrm{d} t_{1}}{ }_{1} \mathrm{~d} t \\
& +\frac{C \mathrm{~d}}{k_{B} T \mathrm{~d} t}{ }_{0}^{\int} g\left(t-t_{1}\right){ }_{-\infty}^{\int_{-\infty}} F(x) \rho(x, t) \mathrm{d} x \mathrm{~d} t_{1} \tag{29}
\end{align*}
\]
and the derivative of the second moment of \(\operatorname{PDF} \rho(x, t)\) with respect to \(t\)
\[
\begin{align*}
& \frac{\mathrm{d}}{\left\langle x^{2}(\right.}={ }^{\int} t\left(\begin{array}{ll}
t & t
\end{array}\right) \frac{\mathrm{d}}{\left\langle x^{2}(t\right.} \mathrm{d} t_{1}+2 C_{\mathrm{d} t}^{\underline{\mathrm{d}}}{ }^{\int}{ }_{-}^{t} g_{1}\left(t{ }_{0} t\right) \mathrm{d} t \\
& t)\rangle \quad 1)\rangle \\
& \mathrm{d} t \quad-\frac{1}{0} \quad \mathrm{~d} t_{1} \\
& +\frac{2 C \mathrm{~d}}{k_{B} T \mathrm{~d} t}{ }_{0}{ }_{0} g\left(t-t_{1}\right){ }_{-\infty}^{\int_{\infty}} x F(x) \rho(x, t) \mathrm{d} x \mathrm{~d} t_{1} . \tag{30}
\end{align*}
\]

Now we apply the Laplace transform to (29) and (30), and we arrive at
and
\[
\begin{align*}
& \left\langle x(s)=\overline{\bar{g}}_{s}(s)\right] \tag{31}\\
& \rangle_{s}(x(0)\rangle[1- \\
& s
\end{align*}
\]
\[
\begin{equation*}
x_{\left.g_{s}^{s}(s)\right]}^{2}=\frac{\left\langle x^{2}(0)\right\rangle[1-}{s\left[1+g_{s}(s)\right]}+\frac{2 C g_{s}(s)}{s\left[1+g_{s}(s)\right]} \tag{32}
\end{equation*}
\]

We note that equation (31) can be solved for any waiting time PDF, and the solution is given by
\[
\begin{align*}
& \langle x(t)\rangle= \tag{33}\\
& \langle x(0)\rangle
\end{align*} \quad 1-{ }_{0}^{\mathrm{J} t} g\left(t_{1}\right) \mathrm{d} t_{1}
\]

In the case of \(g(t)(5)\), we have
\[
\begin{align*}
& g(t)(5) \text {, we have } \tag{34}\\
& x(t)=x(0) \quad 1 \quad b+\lambda b^{1-a}{ }^{\int}{ }^{t} e^{-b t} E \quad\left({ }_{-} \lambda t^{\alpha}\right) \mathrm{d} t
\end{align*}
\]
and
\[
\begin{align*}
& x^{2}(t)=x^{2}(0)+2 \frac{k_{B} T}{m \omega^{2}}-x^{2}(0) \\
& \times b+\lambda b^{1-a} \int^{{ }^{1}} e^{-b t_{1}} \underline{\left[-\left(b+\lambda b^{1-\alpha}\right) t\right]^{n}} E^{(n)} \quad\left(-\lambda t^{\alpha}\right) \mathrm{d} t \tag{35}
\end{align*}
\]

It is found that the first two moments have complicated forms associated with the Mittag-Leffler function. For \(\alpha=1\) the Mittag-Leffler function reduces to the exponential function, and all the above results reduce to those of the ordinary diffusion equation. The thermal equilibrium is reached when \(t \rightarrow \infty\), then we have \(\left\langle x^{2}(\infty)\right\rangle=\) \(k_{B} T / m \omega^{2}\). If the system satisfies the special initial spatial condition as \(\langle x(0)\rangle=0\) and \(\left\langle x^{2}(0)\right\rangle=k_{B} T / m \omega^{2},\langle x(t)\rangle=0\) and \(\left\langle x^{2}(t)\right\rangle=k_{B} T / m \omega^{2}\) for all the time; therefore, average of displacement and its second moment are independent of time.

\section*{3. Conclusion}

We have investigated the uncoupled CTRW model with the waiting time PDF given by (5) for force-free and linear force cases. We have presented analytical solutions for the first two moments and probability distribution. We have shown, for the force-free case, the system presents normal regimes at the small and large times, but it presents a deviation from the normal regime at the intermediate times; we note that the solutions for the first two moments can be described in terms of the generalized Mittag-Leffler function. In figure 3 we show the PDF, and it presents cusp for the intermediate times which is associated with the anomalous regime; this result reinforces the fact that the cusp present in the PDF for anomalous regime is typical for the CTRW model (see the cusp present in the PDFs for other waiting time PDFs [10, 13]). For the linear force \(F(x)=-m \omega^{2} x\), all the solutions presented in this work are described in terms of the generalized Mittag-Leffler function.

\section*{Acknowledgments}

The author acknowledges partial financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazilian agency.

\section*{References}
[1] Montroll E W and Weiss G H 1965 J. Math. Phys. 6167
[2] Metzler R and Klafter J 2000 Phys. Rep. 3391
[3] Scher H and Lax M 1973 Phys. Rev. B 74502
Scher H and Montroll E 1975 Phys. Rev. B 122455
[4] Helmstetter A and Sornette D 2002 Phys. Rev. E 66061104 Corral Á 2006 Phys. Rev. Lett. 97178501
[5] Berkowitz B and Scher H 1997 Phys. Rev. Lett. 794038
[6] Boguñá M and Corral Á 1997 Phys. Rev. Lett. 784950
[7] Gudowska-Nowak E and Weron K 2001 Phys. Rev. E 65011103
[8] Nelson J 1999 Phys. Rev. B 5915374
[9] Scalas E, Gorenflo R and Mainardi F 2000 Physica A 284376
Mainardi F, Raberto M, Gorenflo R and Scalas E 2000 Physica A 287468
Scalas E 2006 Physica A 362225
[10] Fa K S and Wang K G 2010 Phys. Rev. E 81011126
[11] Fa K S and Wang K G 2010 Phys. Rev. E 81051126
[12] Fa K S and Mendes R S 2010 J. Stat. Mech. Po4001
[13] Fa K S 2010 Phys. Rev. E 82012101
[14] Sokolov I M and Klafter J 2005 Chaos 15026103
[15] Carpinteri A and Mainardi F 1997 Fractals and Fractional Calculus in Continuum Mechanics (Wien, Springer, Wien), pp. 223-276.
[16] Stehfest H 1970 Commun. ACM 1347 Stehfest H 1970 Commun. ACM 13624
[17] Risken H 1996 The Fokker-Planck Equation (Berlin, Springer-Verlag)


```

