Table of contents

Volume 84

Number 4, October 2011

Previous issue
 Next issue >

Open all abstracts

Papers

General physics

J-Matrix approad	ch for the exponenti	al-cosine-screened Coulomb potential	045001	
I Nasser, M S Abdelmonem and Afaf Abdel-Hady				
	View article	🔁 PDF		
Universal quantu	im computing with	nanowire double quantum dots	045002	
Peng Xue				
+ Open abstract	View article	🔁 PDF		
An analysis of th	e applications of th	e modified Kratzer potential	045003	
Ali Akbar Babaei-I	Brojeny and Mojtaba M	Mokari		
+ Open abstract	View article	PDF		
On a (2+1)-dime	ensional Madelung s	system with logarithmic and with Bohm quantum potentials: Ermakov reduction	045004	

On a (2+1)-dimensional Madelung system with logarithmic and with Bohm quantum potentials: Ermakov reduction

On the photon dis	stribution of the two	o-mode squeezed chaotic state	045005
Jun Zhou, Hong-yi	Fan and Jun Song		
+ Open abstract	View article	PDF	
Entanglement sw	apping of a GHZ st	ate via a GHZ-like state	045006
Chia-Wei Tsai and	Tzonelih Hwang		
+ Open abstract	View article	PDF	
Synthetic multice	ellular oscillatory sy	stems: controlling protein dynamics with genetic circuits	045007
Aneta Koseska, Evg	genii Volkov and Jürge	en Kurths	
+ Open abstract	View article	PDF	
Magnetic operation	ons: a little fuzzy m	nechanics?	045008
B Mielnik and A Ra	amírez		
+ Open abstract	View article	PDF	
Optimization ana	lysis of the perform	nance of an irreversible Ericsson refrigeration cycle in the micro/nanoscale	045009
Hao Wang, Guoxing	g Wu and Yueming Fu	I Contraction of the second	
+ Open abstract	View article	PDF	
Nonclassical prop	perties of the integr	ability condition of the time-dependent SU(2) quantum system	045010
M Sebawe Abdalla	and E M Khalil		
+ Open abstract	View article	PDF	

Xing Xiao, Mao-Fa Fang and Yan-Min Hu

+ Open abstract 🔄 View article 🔁 PDF

Combined effect	s of asymmetry and	noise correlation on the noise-enhanced stability phenomenon in a bistable system	045012
Dong-Cheng Mei, 2	Zheng-Lin Jia and Car	n-Jun Wang	
	View article	PDF	
Nonadditivity of	quantum capacities	s of quantum multiple-access channels and the butterfly network	045013
Peng Huang, Guang	gqiang He, Jun Zhu ar	nd Guihua Zeng	
	View article	PDF	
Subquantum non	local correlations in	nduced by the background random field	045014
Andrei Khrennikov	7		
	View article	PDF	
Cryptanalysis of	quantum secret sha	ring based on GHZ states	045015
Xiao-Fen Liu and F	Ri-Jing Pan		
	View article	PDF	
Scalar field record	nstruction of power	-law entropy-corrected holographic dark energy	045016
Esmaeil Ebrahimi a	and Ahmad Sheykhi		
+ Open abstract	View article	PDF	
The chaotic atom	n model via a fracta	l approximation of motion	045017
M Agop, P Nica, S	Gurlui, C Focsa, D M	agop and Z Borsos	
	Tiew article	🔁 PDF	

Three-dimension	nal quantum key dis	tribution in the presence of several eavesdroppers	045018
M Daoud and H Ez	z-zahraouy		
+ Open abstract	View article	PDF	
Path integral trea	atment of the one-di	mensional Klein–Gordon oscillator with minimal length	045019
Y Chargui and A T	rabelsi		
	Tiew article	PDF	
Family relations	hip among power-la	w multi-term potentials in extra dimensions	045020
N Saikia			
	View article	PDF	
Quantum discore	d for a central two-c	ubit system coupled to an XY spin chain with Dzyaloshinsky–Moriya interaction	045021
Liang Qiu and An	Min Wang		
	View article	PDF	
Continuous-time	random walk: exac	et solutions for the probability density function and first two moments	045022
Kwok Sau Fa and J	Joni Fat		
+ Open abstract	View article	PDF	
Landau quantiza	tion for an electric of	quadrupole moment	045023
J Lemos de Melo, l	K Bakke and C Furtad	0	
	Tiew article	🔁 PDF	
Design of a pass	ification controller	for uncertain fuzzy Hopfield neural networks with time-varying delays	045024
R Sakthivel, K Mat	thiyalagan and S Mars	hal Anthoni	
+ Open abstract	View article	🔁 PDF	

Nuclear physics			
Further investiga	tion of the elastic s	cattering of ¹⁶ O, ¹⁴ N and ¹² C on the nucleus of ²⁷ Al at low energies	045201
Sh Hamada, N Bur	tebayev, K A Gridnev	and N Amangeldi	
+ Open abstract	View article	PDF	
Natural and artifi	icial alpha radioacti	vity of platinum isotopes	045202
O A P Tavares and	E L Medeiros		
	View article	PDF	
Atomic and mole	cular physics		
The effects of qu	antum interference	between direct and resonant photorecombination of H-like Ar ¹⁷⁺ ions	045301
Jianjie Wan and Ch	enzhong Dong		
	View article	PDF	
Spectroscopic ell	lipsometry time stud	ly of low-temperature plasma-polymerized plain trimethylsilane thin films deposited on silicon	045302
Taher M El-Agez, I	David M Wieliczka, C	hris E Moffitt and Sofyan A Taya	
	View article	PDF	
Molecular dynan	nics study showing	the effect of quenching temperature on structural changes of a molten Cu ₄₁₁ cluster	045303
Lin Zhang and Qin	na Fan		
+ Open abstract	View article	PDF	
Theoretical study	y of the 5p ⁵ nln'l' aut	oionizing states of Cs	045304
A Kupliauskienė			
+ Open abstract	View article	🔁 PDF	

Car–Parrinello m	nolecular dynamics	study of the coordination on Al ³⁺ (aq)	045305
Julen Larrucea			
+ Open abstract	View article	PDF	
Electromagnetism	n, optics, acoustics, l	neat transfer, classical mechanics and fluid dynamics	
Entropy squeezin	ng of a Jaynes–Cum	mings atom with the Glauber–Lachs state	045401
Hünkar Kayhan			
+ Open abstract	View article	PDF	
An Au buffer lay	ver for the growth of	a ZnO sol–gel film on a Si substrate	045402
Yidong Zhang, Guo	ofu Sun, Hongxiao Zha	ao, Jing Li and Zhi Zheng	
	View article	PDF	
Dynamics of the	cavity radiation of	a correlated emission laser initially seeded with a thermal light	045403
Sintayehu Tesfa			
+ Open abstract	View article	PDF	
Finite difference filter diagonaliza	time domain calcul tion	ation of three-dimensional phononic band structures using a postprocessing method based on the	045404
Xiao-Xing Su, Tiar	-Xue Ma and Yue-She	eng Wang	
+ Open abstract	View article	PDF	
Double-control c	oherent absorption	and transparency in a six-level optical gain medium	045405
Saswata Ghosh and	l Swapan Mandal		
+ Open abstract	Tiew article	PDF	

Effect of seconda	ary electron emissio	on on Jean's instability in a complex plasma in the presence of nonthermal ions	045501
Susmita Sarkar, Sa	umyen Maity and Sou	myajyoti Banerjee	
+ Open abstract	View article	PDF	
New findings ab	out sawtooth oscilla	tions in LHCD plasmas on the HT-7 tokamak using tomography of soft x-ray signals	045502
Liqing Xu, Liqun H	Iu, Erzhong Li, Kaiyu	n Chen and Zhiyuan Liu	
	Tiew article	PDF	
Parametric excita	ation of surface elec	etron cyclotron O-modes by an external alternating electric field	045503
V O Girka, A V Gi	rka and V V Yarko		
+ Open abstract	Tiew article	PDF	
Possibility of a g	iant scattering enha	ncement due to wave trapping in a reflectometry experiment	045504
E Gusakov, S Heur	aux, M Irzak and A Po	opov	
	View article	PDF	
Trapping effects	in a self-gravitating	g quantum dusty plasma	045505
M Ayub, H A Shah	and M N S Qureshi		
+ Open abstract	View article	PDF	
Analytical mode	l for electromagneti	c radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma	045506
Zi-Yu Chen, Shi Ch	hen, Jia-Kun Dan, Jian	-Feng Li and Qi-Xian Peng	
	View article	PDF	
Condensed matte	er: structural, mecha	unical and thermal properties	
Effect of inclusion	ons in Nd-doped Na	Y(WO ₄) ₂ single crystals	045601

R G Salunke, S G Singh, A K Singh, D G Desai, M Tyagi, S W Gosavi and S C Gadkari

+ Open abstract 🔄 View article 🔁 PDF

Effect of substrate	e temperature on the	e structural, electrical and optical behaviour of reactively sputtered Ag-Cu-O films	045602
M Hari Prasad Redd	ly, P Narayana Reddy,	B Sreedhar, J F Pierson and S Uthanna	
	View article	PDF	
Thermal expansion	on and magnetizatio	n studies of the novel ferromagnetic shape memory alloy Ni ₂ MnGa _{0.88} Cu _{0.12} in a magnetic field	045603
T Sakon, H Nagashi	io, K Sasaki, S Susuga	, D Numakura, M Abe, K Endo, H Nojiri and T Kanomata	
	Tiew article	PDF	
Condensed matter	r: electronic structu	re, electrical, magnetic and optical properties	
Characterization of	of charge transport a	and electrical properties in disordered organic semiconductors	045701
L G Wang, H W Zha	ang, X L Tang, Y Q So	ong, Z Y Zhong and Y X Li	
+ Open abstract	View article	PDF	
Effect of Gd ³⁺ do	ping on the structur	al and magnetic properties of nanocrystalline Ni-Cd mixed ferrite	045702
Binu P Jacob, Smith	a Thankachan, Sheena	a Xavier and E M Mohammed	
+ Open abstract	View article	PDF	
Optical parameter	rs of ternary Te ₁₅ (Se	$e_{100-x}Bi_x)_{85}$ thin films deposited by thermal evaporation	045703
Kameshwar Kumar,	Pankaj Sharma, S C F	Katyal and Nagesh Thakur	
+ Open abstract	View article	PDF	
Muonic atom form	nation using the two	o-state approximation in different energy regions	045704
B Rezaei and S Jesri	1		

	Tiew article	PDF	
Did Herbert Fröh	lich predict or post	dict the isotope effect in superconductors?	045705
J E Hirsch			
+ Open abstract	View article	PDF	
Superconductivit	y from strong repul	sive interactions in the two-dimensional Hubbard model	045706
L G Sarasua			
+ Open abstract	View article	PDF	
Interdisciplinary	physics and related	areas of science and technology	
Determination of	the optical constant	ts of a vacuum evaporated polythiophene thin film	045801
Sandip V Kamat, V	'ijaya Puri and R K Pu	ri	
+ Open abstract	View article	PDF	
Implementation of nanocomposite p	of a diffusion-limite olymer electrolyte	ed aggregation model in the simulation of fractals in PVDF-HFP/PEMA–NH ₄ CF ₃ SO ₃ –Cr ₂ O ₃ films	045802
S Amir, S A Hashir	n Ali and N S Moham	ed	
+ Open abstract	View article	PDF	
Long-distance pu maps	Ilse propagation on	high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded	045803
Yerima Klofaï, B Z	Essimbi and D Jäger		
+ Open abstract	View article	PDF	
Geophysics, astro	nomy and astrophy	sics	

Ionospheric perturbations associated with two recent major earthquakes (M > 5.0)

S Priyadarshi, S Kumar and A K Singh

+ Open abstract 🔄 View article 🗭 PDF

Comments on Astrophysics and Cosmology

Comment Resolved young stellar populations in star-forming regions of the Magellanic Clouds 048401 **Dimitrios A Gouliermis** 🔁 PDF View article + Open abstract JOURNAL LINKS Submit an article About the journal Editorial Board **Topical Issues** Author guidelines Review for this journal Publication charges News and editorial Awards Journal collections Contact us

Continuous-time random walk: exact solutions for the probability density function and first two moments

Kwok Sau Fa¹, Joni Fat²

 ¹ Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá-PR, Brazil,
 ² Jurusan Teknik Elektro - Fakultas Teknik, Universitas Tarumanagara, Jl. Let.

Jurusan Teknik Elektro - Fakultas Teknik, Universitas Tarumanagara, Jl. Let. Jend. S. Parman 1, Blok L, Lantai 3 Grogol, Jakarta 11440, Indonesia

E-mail: kwok@dfi.uem.br

Abstract. We consider decoupled continuous time random walk model with finite characteristic waiting time and approximate jump length variance. We take the waiting time probability distribution given by a combination of exponential and Mittag-Leffler function. Using this waiting time probability distribution we investigate diffusion behaviors for all the time. We obtain exact solutions for the first two moments and probability distribution for force-free and linear force cases. Due to the finite characteristic waiting time and jump length variance the model presents, for the force-free case, normal diffusive behavior in the long-time limit. Further, the model can describe anomalous behavior at the intermediate times.

PACS numbers: 02.50.-r, 05.10.Gg, 05.40.-a

1. Introduction

The continuous-time random walk (CTRW) model [1] was proved a useful tool for the description of systems out of equilibrium [2, 3]. In fact, the CTRW has been used in a wide range of applications such as earthquake modelling [4], random networks [5], self-organized criticality [6], electron tunneling [7], electron transport in nanocrystalline films [8] and financial stock market [9]. However, analyses of diffusion processes are often restricted to a long-time limit. On the other hand, informations about the initial and intermediate processes are important to distinguish different systems which may lead to the same behavior in the long-time limit. Despite some progress in simple CTRW has been made, more novel approaches need to be developed for the description of CTRW with generic waiting time probability density function (PDF) and external force. In the CTRW model, without external force, the PDF obeys the following equation in Fourier-Laplace space:

$$\rho_{ks}(k,s) = \frac{(1-g_s(s))\rho_{k0}(k)}{s(1-\psi_{ks}(k,s))},$$
(1)

where $\rho_{k0}(k)$ is the Fourier transform of the initial condition $\rho_0(x)$, $\psi_{ks}(k, s)$ is the Fourier-Laplace transform of the jump PDF $\psi(x, t)$ and $g_s(s)$ is the Laplace transform of the waiting time PDF $g(t) = \int_{-\infty}^{\infty} dx \psi(x, t)$. The CTRW can be simplified through the decoupled jump PDF $\psi_{ks}(k, s) = \varphi_k(k)g_s(s)$ in Fourier-Laplace space, where $\varphi(x) = \int_{-\infty}^{\infty} dt \psi(x, t)$ is the jump length PDF. Under the case of finite jump length variance $\int_{-\infty}^{\infty} dx x^2 \varphi(x)$ [2], the PDF for CTRW can be given by

$$\rho_{ks}(k,s) = \frac{(1 - g_{\underline{s}}(s))\rho_{\underline{k}\underline{0}}(k)}{s(1 - (1 - Ck^2)g_{\underline{s}}(s))}$$
(2)

in Laplace-Fourier space, where ${}^{\vee}C$ has a dimension of length and $\rho_{k0}(k)$ is the Fourier transform of the initial condition $\rho_0(x)$. Although this equation is valid for a finite jump length variance, anomalous diffusion can be produced by it with appropriate choices of g(t). However, this equation is not convenient to be used to study diffusion behavior in finite domains and/or in the presence of external forces. In particular, for a long-tailed power-law waiting time PDF $g(t) \sim (t/\tau)^{\alpha}$ the fractional diffusion equation can be used to study diffusion [2].

Recently, we have made progress in obtaining an integro-differential diffusion equation for the CTRW with any waiting time PDF and external force F(x) [10, 11]:

$$\frac{\partial \rho(x,t)}{\partial t} - \frac{\int_{-t}^{t} dt \ g(t-t) \ \frac{\partial \rho(x,t_1)}{\partial t_1}}{\Gamma dt} = CL_{FP} \frac{\partial}{\partial t} \int_{-\tau}^{t} dt \ g(t-t) \rho(x,t), (3)$$

where

$$L_{FP} = -\frac{\partial}{\partial x} \frac{F(x)}{k_B T} + \frac{\partial^2}{\partial x^2},$$
(4)

 k_B is the Boltzmann constant, and *T* is the absolute temperature. Some interesting results from (3) are also presented in [12, 13]. We note that equation (3) can also be obtained by the usage of the subordination process [14].

Continuous time random walk: Exact solutions

The aim of this work is to investigate the CTRW model with the waiting time PDF given by a combination of exponential and Mittag-Leffler function. It is well-known that the waiting time PDF, given by a pure exponential function, produces normal diffusion process for all the time. The above-mentioned waiting time PDF permits us to investigate the CTRW model with a combination of exponential and stretched exponential function at small times. In particular, we obtain analytical solutions for the first two moments and PDF for force-free and linear force cases. We show that the model describes, for force-free case, normal diffusion regimes at the small and large times, and anomalous diffusion regimes at the intermediate times; this means that the stretched exponential does not modify the normal diffusion process at small times.

2. Mean square displacement, first two moments and probability distribution

In this work we investigate the CTRW model described by equation (3), using the following waiting time PDF:

$$q(t) = b + \lambda b^{1-\alpha} e^{-bt} E_{\alpha,1}(-\lambda t^{\alpha}), 0 < \alpha \le 1, b > \lambda^{\frac{1}{\alpha}},$$
(5)

where *b* and λ are positive constants and $E_{\mu,\nu}(y)$ is the generalized Mittag-Leffler function defined by [15] $E_{\mu,\nu}(y) = \sum_{n=0}^{\infty} y^n / \Gamma(\nu + \mu n), \mu > 0, \nu > 0$. The waiting time PDF g(t) interpolates approximately between the initial exponential form and intermediate power-law behavior, and with exponential behavior in the long-time limit; it is different from the functions employed in the previous works [10, 12, 13]. In those cases the functions are given by a combination of power-law and generalized Mittag-

Leffler function $g_1(t) = \lambda t^{a-1} E_{\alpha,\alpha}(-\lambda t^{\alpha})$, a sum of exponentials $g_2(t) = A_{t=1}^{\sum_n} c_i e^{-a_i t}$ and a combination of power-law and exponential function $g_3(t) = d^{\gamma} t^{\gamma-1} e^{-dt} / \Gamma(\gamma)$, where $\Gamma(z)$ is the Gamma function; the first one has a power-law tail, then the system exhibits anomalous diffusion in the long-time limit, however, the second one contains multiple characteristic times and it may exhibit power-law behavior with logarithmic oscillation at the intermediate times and exponential behavior in the long-time limit. The third one has approximately initial and intermediate power-law behavior, then the system describes anomalous diffusion at the small and intermediate times, and it exhibits normal diffusion in the long-time limit. In the case of g(t), it presents a finite characteristic waiting time given by $\int_0^{\infty} dttg(t) = [1 + \lambda(1 - \alpha) b^{-\alpha}]/(b + \lambda b^{1-\alpha})$; this means that the system describes normal diffusion in the long-time limit.

The definition of the derivative of the q^{th} moment of PDF $\rho(x, t)$ with respect to t is:

$$\frac{\mathrm{d}}{\langle x^{q}} = \int_{-\infty}^{\infty} x^{q} \frac{\partial \rho(x, t)}{\partial t} \mathrm{d}x, \tag{6}$$

where *q* is a positive integer number.

Force-free case. Substituting (3) into (6), we can obtain the first moment

$$\langle x(t) \rangle = \langle x(0) \rangle \tag{7}$$

and the derivative of the second moment with respect to t

$$\frac{\mathrm{d}}{\langle x^{2}(t) = -g_{1}(t) + f_{0}(t) + 2D_{0} \frac{\partial}{\partial t} -g_{1}(t) +$$

Equation (7) shows that the mean square displacement $(x(t) - x(0))^2$ is identical to the variance $(x(t) - \langle x(t) \rangle)^2$ with $\langle x(0) \rangle = x(0)$.

In order to obtain the mean square displacement we apply the Laplace transform to (8) and using

$$g_s(s) = \frac{b + \lambda b^{1-\alpha}}{(b+s) + \lambda (b+s)^{1-\alpha}},$$
(9)

we obtain

$$s x^{2}(s) = \frac{2C(b+\lambda b^{1-\alpha})}{(b+s)+\lambda(b+s)^{1-\alpha}-(b+\lambda b^{1-\alpha})}.$$
 (10)

Now, using the binomial expansion to (10) yields

$$(x(t) - x(0))^{2} = 2C \ b + \lambda b^{1-\alpha}$$

$$\times \int_{0}^{\int t} e^{-bu} \sum_{n=0}^{\infty} \frac{[(b + \lambda b^{1-\alpha}) u]^{n}}{n!} E^{(n)}_{\alpha,1+(1-\alpha)n}(-\lambda u^{\alpha}) du, \qquad (11)$$

where

$$E_{\mu,\nu}^{(n)}(y) = \frac{d^n}{dy} E_{\mu,\nu}(y) = \sum_{k=0}^{\infty} \frac{(n+k)! y^k}{k! \Gamma(\nu + \alpha (n+k))}.$$
 (12)

. . .

It is noted that equation (11) shows a complicate form, but for $\alpha = 1$ the Mittag-Leffler function reduces to the exponential function, and the above result reduces to the one of normal diffusion from the ordinary diffusion equation or from the integro-differential diffusion equation (3) with the exponential waiting time PDF [10], $\langle x(t) \rangle = \langle x(0) \rangle + 2C(b + \lambda)t$. For short times the mean square displacement is given by

$$(x(t) - x(0))^{2} \sim 2C \quad b + \lambda b^{1-\alpha} \quad t,$$
(13)

and for long times it yields

$$(x(t) - x(0))^{2} \sim \frac{C\lambda \alpha (1 - \alpha) (1 + \lambda b^{-\alpha})}{b^{\alpha} [1 + \lambda (1 - \alpha) b^{-\alpha}]^{2}} + \frac{2C (b + \lambda b^{1 - \alpha})}{1 + \lambda (1 - \alpha) b^{-\alpha}}t.$$
(14)

We see that the mean square displacement presents normal diffusive regime for short and large times. In general, the mean square displacement (11) begins with a normal diffusion regime, then it develops anomalous diffusion regime at the intermediate times, and eventually reaches a normal diffusion regime. These regimes can be viewed in figures 1 and 2. In these figures we also compare the analytical solution for the MSD (11) with the power-law function; the MSD is very close to a linear function. Figure 1. Plots of $(x(t) - x(0))^2$ for C = 1, b = 0.3, $\lambda = 0.15$ and $\alpha = 0.5$. The solid line is obtained from (11). The dashed dotted and dashed lines are the asymptotic curves obtained from (13) and (14), respectively. The dotted line corresponds to the

power-law function 0.1022t^{0.9415}.

Figure 2. Plots of $(x(t) - x(0))^2$ for C = 1, b = 0.03, $\lambda = 0.05$ and $\alpha = 0.7$. The solid lines are obtained from (11). The dashed dotted and dashed lines are the asymptotic curves obtained from (13) and (14), respectively. The dotted line

corresponds to the power-law function 0.0935t^{0.9715}.

Now we consider the exact solution for the PDF $\rho(x, t)$. It can be obtained from [10]

$$\rho_{s}(x,s) = \frac{\sqrt{1}}{2 Cs} \underbrace{\frac{1 - g_{s}(s)}{g_{s}(s)} \exp \left[-\sqrt{\frac{|x|}{C}} + \frac{1 - g_{s}(s)}{g_{s}(s)}\right]}_{C} .$$
(15)

Substituting (9) into (15) yields

$$\rho(x,t) = \frac{1}{2\pi \overline{C(b+\lambda b^{1-\alpha})}} \int_{0}^{\infty} d\omega \Phi(\omega,x) \cos(\omega t + \theta(\omega,x)), \quad (16)$$

where

$$r_1(\omega) = \sqrt[]{\omega^2 + b^2}, \ \theta_1(\omega) = \arccos \frac{b}{r_1}, \qquad (17)$$

$$r_{2}(\omega) = \lambda r_{1}^{1-\alpha}(\omega)$$

$$\times \overline{r_{1}^{1-\alpha}(\omega)} = \frac{b^{1-\alpha}}{r_{1}^{1-\alpha}(\omega)} + \sin\left((1-\alpha)\theta_{1}(\omega)\right) + \frac{\omega b^{1-\alpha}}{\lambda r_{1}^{1-\alpha}(\omega)}$$
(18)
$$\theta_{2}(\omega) = \arccos \prod_{n=1}^{1-\alpha} \alpha$$

$$(\omega) = \arccos \qquad \underbrace{\frac{1}{1}}_{\lambda r} \qquad \underbrace{r_2(\omega)}_{\alpha} \qquad , \qquad (19)$$

$$\Phi(\omega, x) = \frac{\frac{1}{2} - \sqrt{\frac{|x|}{c(b+\lambda b^{1-\alpha})}} \sqrt{\frac{1}{c(b+\lambda b^{1-\alpha})}} \sqrt{\frac{1}{c(b+\lambda b^{1-\alpha})}} \sqrt{\frac{1}{2}}$$
(20)

and

$$\theta(\omega, x) = \frac{\theta_2(\omega) - \pi}{2} - \frac{|x|}{\overline{C(b + \lambda b^{1-\alpha})}} \overline{r_2(\omega)} \sin \frac{\theta_2(\omega)}{2} .$$
(21)

The asymptotic expansion of $\rho(x, t)$ (for a given x and $t \gg 1$) is given by

$$\rho(x,t) \sim \frac{1}{2} = \frac{1+\lambda(1-\alpha)b^{-\alpha}}{\pi C (b+\lambda b^{1-\alpha})t}.$$
(22)

Figure 3. Plots of $\rho(x, t)$ versus x coordinate with $C = 1, b = 0.03, \alpha = 0.5, \lambda = 0.15$, for the force-free case.

Equation (22) shows that the PDF $\rho(x, t)$ has a decay similar to $1/\sqrt[n]{t}$ of the normal diffusion, and independently of the spatial coordinate. This is not a surprise because the waiting time PDF (5) has a finite characteristic waiting time.

Now we show the PDF $\rho(x, t)$ versus x coordinate for different times. In figure 3a, the PDF presents a cusp for t = 9 which is a hallmark of the CTRW model for anomalous diffusion process in x coordinate; however, the PDF shows a smooth shape for t = 35 due to the fact that the system describes normal regime for large times. In figure 3b, the PDF presents a smooth shape due to the normal diffusion regime for short times. It is worth mentioning that equation (16) is difficult to compute numerically for small values of x. In this case we have checked our numerical results obtained from (16) with those of a numerical inversion of Laplace transform algorithm [16]. Both results are similar, except at the short distance.

Linear force. We now study the case of a linear force $F(x) = -m\omega^2 x$ with the waiting time PDF (5). We first obtain the PDF $\rho(x, t)$; it can be obtained from (3). In order to do so, we employ the method of separation of variables $\rho_n(x, t) = X_n(x)T_n(t)$; substituting it into (3) yields

$$\frac{\mathrm{d}T_n(t)}{\mathrm{d}t} - \frac{\int_{-t}^{t} g_1(t-t)}{\int_{0}^{t} \mathrm{d}t_1} \mathrm{d}t_1 = -\mu_n \frac{\mathrm{d}}{\mathrm{d}t} - \frac{\int_{-t}^{t} g_1(t-t)}{\int_{0}^{t} \mathrm{d}t_1} T_1(t) \mathrm{d}t \qquad (23)$$

and

$$CL_{FP}X_n(x) = -\mu_n X_n(x), \tag{24}$$

where μ_n are the eigenvalues. Then, the solution for $\rho(x, t)$ is given by the expansion of eigenfunctions

$$\rho(x,t|x',0) = e^{\frac{\Phi(x')}{2} - \frac{\Phi(x)}{2}} \sum_{n} \psi_{n}(x') \psi_{n}(x) T_{n}(t), \qquad (25)$$

where $\Phi(x) = V(x)/k_BT$, V(x) is the potential given by F(x) = -dV(x)/dx, and $\psi_n(x) = e^{\Phi(x)/2}X_n(x)$. We note that the eigenvalue equation of the operator L_{FP} , (24), is the same as the one of eigenvalue equation of ordinary Fokker-Planck operator [17]. Now, we only need to solve equation (23) that depends only on time. Applying the Laplace transform to (23) yields

$$T_{sn}(s) = \frac{T_n(0) \left[1 - g_s(s)\right]}{s - (1 - n) s g_s(s)} \quad .$$
(26)

Substituting $g_s(s)$ into (26) we obtain

$$T_{n}(t) = 1 - n \quad b + \lambda b^{1-\alpha}$$

$$\times \int_{0}^{\int t} e^{-bu} \sum_{k_{1}=0}^{\infty} \frac{\left[(1-n) \left(b + \lambda b^{1-\alpha}\right) u\right]^{k_{1}}}{k_{1}!} E_{\alpha,1+(1-\alpha)k_{1}}^{(k_{1})} (-\lambda u^{\alpha}) du, \qquad (27)$$

Figure 4. Plots of $\rho(x, t)$ versus *x* coordinate with *C* = 1, *b* = 0.03, α = 0.5, λ = 0.15, for the linear force case.

where we have omitted the term $T_n(0)$. Then, the solution for $\rho(x, t | x', 0)$ is given by

$$\rho(x,t|x',0) = m \overline{\frac{\omega^2}{2\pi k_B T}} \sum_{n=0}^{\infty} \frac{T_n(t)}{2^n n!} H_n \frac{x}{\sqrt{2}} - H_n \frac{x'}{2} e^{-\frac{x^2}{2}}, \qquad (28)$$

where $x = x m\omega^2/(k_BT)$, $C = k_BT/m\omega^2$, $\mu_n = n$ and $H_n(y)$ denotes the Hermite polynomials. It is worth mentioning that $T_n(t)$ reduces to $T_n(t) = \exp[-(a + \lambda)nt]$ for $\alpha = 1$, which is the solution of the ordinary diffusion equation. In figure 4 we show the PDF for different times.

To obtain the first two moments we substitute (3) into (6), and we obtain the derivative of the first moment of PDF $\rho(x, t)$ with respect to *t*

$$\frac{\mathrm{d}\langle x(t)\rangle}{\langle t|\mathrm{d}t|} = \int_{0}^{\int_{-\infty}^{t}} g - t_{1} \frac{\mathrm{d}\langle x(t)\rangle}{\mathrm{d}t_{1}} \mathrm{d}t$$

$$+ \frac{C}{k_{B}T} \frac{\mathrm{d}}{\mathrm{d}t|} \int_{0}^{\int_{-\infty}^{t}} F(x)\rho(x,t)\mathrm{d}x\mathrm{d}t_{1} \qquad (29)$$

and the derivative of the second moment of PDF $\rho(x, t)$ with respect to t

$$\frac{d}{\langle x^{2}(t) = \int_{0}^{t} g(t - t_{1}) \frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt_{1} + 2C \frac{d}{dt} - g_{1}(t - t_{1}) dt$$

$$\frac{d}{\langle x^{2}(t) dt} dt$$

Now we apply the Laplace transform to (29) and (30), and we arrive at

and

$$x_{\mathcal{G}_{s}(s)]}^{2} = \frac{\langle x^{2}(0) \rangle [1 - \frac{2Cg_{s}(s)}{s[1 + g_{s}(s)]} + \frac{2Cg_{s}(s)}{s[1 + g_{s}(s)]}}{s[1 + g_{s}(s)]}$$
(32)

We note that equation (31) can be solved for any waiting time PDF, and the solution is given by

c

In the case of g(t) (5), we have

$$x(t) = x(0) \quad 1 \qquad b + \lambda b^{1-\alpha} \quad e^{-bt} E \quad (\lambda t^{\alpha}) dt$$
(34)

and

Continuous time random walk: Exact solutions								8
0	1	<i>n</i> =0	<i>n</i> !		$\alpha,1+(1-\alpha)n$	1	1	

Continuous time random walk: Exact solutions

It is found that the first two moments have complicated forms associated with the Mittag-Leffler function. For $\alpha = 1$ the Mittag-Leffler function reduces to the exponential function, and all the above results reduce to those of the ordinary diffusion equation. The thermal equilibrium is reached when $t \rightarrow \infty$, then we have $\langle x^2(\infty) \rangle = k_B T/m\omega^2$. If the system satisfies the special initial spatial condition as $\langle x(0) \rangle = 0$ and $\langle x^2(0) \rangle = k_B T/m\omega^2$, $\langle x(t) \rangle = 0$ and $\langle x^2(t) \rangle = k_B T/m\omega^2$ for all the time; therefore, average of displacement and its second moment are independent of time.

3. Conclusion

We have investigated the uncoupled CTRW model with the waiting time PDF given by (5) for force-free and linear force cases. We have presented analytical solutions for the first two moments and probability distribution. We have shown, for the force-free case, the system presents normal regimes at the small and large times, but it presents a deviation from the normal regime at the intermediate times; we note that the solutions for the first two moments can be described in terms of the generalized Mittag-Leffler function. In figure 3 we show the PDF, and it presents cusp for the intermediate times which is associated with the anomalous regime; this result reinforces the fact that the cusp present in the PDF for anomalous regime is typical for the CTRW model (see the cusp present in the PDFs for other waiting time PDFs [10, 13]). For the linear force $F(x) = -m\omega^2 x$, all the solutions presented in this work are described in terms of the generalized Mittag-Leffler function.

Acknowledgments

The author acknowledges partial financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazilian agency.

References

- [1] Montroll E W and Weiss G H 1965 J. Math. Phys. 6 167
- [2] Metzler R and Klafter J 2000 Phys. Rep. 339 1
- [3] Scher H and Lax M 1973 *Phys. Rev. B* 7 4502 Scher H and Montroll E 1975 *Phys. Rev. B* 12 2455
- [4] Helmstetter A and Sornette D 2002 *Phys. Rev. E* 66 061104 Corral Á 2006 *Phys. Rev. Lett.* 97 178501
- [5] Berkowitz B and Scher H 1997 Phys. Rev. Lett. 79 4038
- [6] Boguñá M and Corral Á 1997 Phys. Rev. Lett. 78 4950
- [7] Gudowska-Nowak E and Weron K 2001 Phys. Rev. E 65 011103
- [8] Nelson J 1999 Phys. Rev. B 59 15374
- [9] Scalas E, Gorenflo R and Mainardi F 2000 *Physica A* 284 376
 Mainardi F, Raberto M, Gorenflo R and Scalas E 2000 *Physica A* 287 468
 Scalas E 2006 *Physica A* 362 225
- [10] Fa K S and Wang K G 2010 Phys. Rev. E 81 011126
- [11] Fa K S and Wang K G 2010 Phys. Rev. E 81 051126

- [12] Fa K S and Mendes R S 2010 J. Stat. Mech. P04001
- [13] Fa K S 2010 Phys. Rev. E 82 012101
- [14] Sokolov I M and Klafter J 2005 Chaos 15 026103
- [15] Carpinteri A and Mainardi F 1997 Fractals and Fractional Calculus in Continuum Mechanics (Wien, Springer, Wien), pp. 223-276.
- [16] Stehfest H 1970 Commun. ACM 13 47 Stehfest H 1970 Commun. ACM 13 624
- [17] Risken H 1996 The Fokker-Planck Equation (Berlin, Springer-Verlag)

