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Abstract. We consider decoupled continuous time random walk model with finite
characteristic waiting time and approximate jump length variance. We take the waiting
time probability distribution given by a combination of exponential and Mittag-Leftler
function. Using this waiting time probability distribution we investigate diffusion
behaviors for all the time. We obtain exact solutions for the first two moments
and probability distribution for force-free and linear force cases. Due to the finite
characteristic waiting time and jump length variance the model presents, for the force-
free case, normal diffusive behavior in the long-time limit. Further, the model can
describe anomalous behavior at the intermediate times.

PACS numbers: 02.50.-1, 05.10.Gg, 05.40.-a




Continuous time random walk: Exact solutions 2
1. Introduction

The continuous-time random walk (CTRW) model [1] was proved a useful tool for the

description of systems out of equilibrium [2, 3]. In fact, the CTRW has been used in
a wide range of applications such as earthquake modelling [4], random networks [5],
self-organized criticality [6], electron tunneling [7], electron transport in nanocrystalline
films [8] and financial stock market [9]. However, analyses of diffusion processes are often
restricted to a long-time limit. On the other hand, informations about the initial agg
intermediate processes are important to distinguish different systems which may lead to
the same behavior in the long-time limit. Despite some progress in simple CTRW has
beengpade, more novel approaches need to be developed for the description of CTRW
with generic waiting time probability density function (PDF) and external force. In
the CTRW model, without external force, the PDF obeys the following equation in
Fourier-Laplace space:

_
Py, (k,8) = (L= gs(s)) prok) (1)

sl - yustk,s))’

where pro(k) is the Fourier transform of the initial condition po(x), wis(k, s) is the
Fourier-Laplace transform of Thejjump PDF w(x,t) and g«(s) is the Laplace transform
of the waiting time PDF g(t) =" = dxp(x,t). The CTRW can be simplified through
the decoupled jump PDIka_;(k,s) = @rk)gs(s) in Fourier-Laplace space, where
Px) = J ® dty(x, t) is the jump length PDF. Under the case of finite jump length
varlanceJiWM dxx’(x) [2], the PDF for CTRW can be given by

(1 = g«(s)) pratk)
s(1-(1=Ck?) g«s)
in Laplace-Fourier space, where Chas adimension oflength and pig(k) is the Fourier
transform of the initial condition pg(x). Although this equation is valid for a finite jump
length variance, anomalous diffusion can be produced by it with appropriate choices of
g(t). However, this equation is not convenient to be used to study diffusiomlechavior in
finite domains and/or in the presence of external forces. In particular, for &ong-tailed
power-law waiting time PDF g(t) ~ (t/t ) the fractional diffusion equation can be used
to study diffusion [2].

Recently, we have made prggress in obtaining an integro-differential diffusion
equation for the CTRW with any waiting time PDF and external force F(x) [10, 11]:

pks(k) S) = {2)

dpeety Ap(x, 1) a0t
— dt t t _ dt t t t
at r g (a ) ot =CLrp at T g( 1 )f(x} )}(3)
where
9. Ex 8
Lev = =55k ;T * 52 “)

kg is the Boltzmann constant, and T is the absolute temperature. Some interesting
results from (3) are also presented in [12, 13]. We note that equation (3) can also be
obtained by the usage of the subordination process [14].
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The aim of this work is to investigate the CTRW model with the waiting time PDF

given by a combination of exponential and Mittag-Leffler function. It is well-known
that the waiting time PDF, given by a pure exponential function, produces normal
diffusion process for all the time. The above-mentioned waiting time PDF permits
us to investigate the CTRW model with a combinagjon of exponential and stretched
exponential function at small times. In particular, we obtain analytical solutions for
the first two moments and PDF for force-free and linear force cases. We show that
the model describes, for force-free case, normal diffusion regimes at the small and large
times, and anomalous diffusion regimes at the intermediate times; this means that the
stretched exponential does not modify the normal diffusion process at small times.

2. Mean square displacement, first two moments and probability
distribution

In this work we investigate the CTRW model described by equation (3), using the
following waiting time PDF:

1

gt)= b+Abl-a e—tha,l(—)Lfa),Oé as 1,b>Ae, (5)
where b and A are positive constants and E,,.(y) is the generalized Mittag-Leffler
function defined by [15] Eu(y) = o, y/T'(v+un), u > 0, v > 0. The waiting
time PDF g(1) interpolates approximately between the initial ggponential form and
intermediate power-law behavior, and with exponential behavior in the long-time limit;
it is different from the functi(m employed in the previous works [10, 12, 13]. In those
cases the functions are given by a combination of power-law and generalized Mittag-

. paddit
&fﬂer function gi(t) = Ate'Eqa(-At%), a sum of exponentials g(t) = AZ’:‘=1 ciegf
and a combination of power-law and exponential function gs(f) = dvtv-"e-dt/I (y),
where I' ¢z is the Gamma function; the first one has a power-law tail, then the system

exhibits anomalous diffusion in the long-time 1irm, however, the second one contains
multiple characteristic times and it may exhibit power-law behavior with logarithmic
oscillation at the intermediate times and exponential behavior in the long-time limit.
The third one has approximately initial and intermediate power-law behavior, then
the system describes anorailous diffusion at the small and intermediate times, and it
exhibits normal diffusion in the long-time limit. In the case &3 (t), it presents a finite
characteristic waiting time givea byI o dttg(t) = [1+A(1 -a)b9] /(b +)Lb1‘ﬂ); this
means that the system describes normal diffusion in the long-timggimit.

The definition of the derivative of the gt moment of PDF p(x, t) with respect to ¢
is:

| o
4 77 wlpxt )
- et
y dt

where ¢ is a positive integer number.
Force-free case. Substituting (3) into (6), we can obtain the first moment

(x(t)) =(x(0)) (7
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and the derivative of the second moment with respect to ¢

d I d F) Iy P 8
— t t - t t)dt.
) )) dty
dt

Equation (7) shﬂvs that the mean square displacement (x(t) - x(O))2 is identical to
the m‘iance (x(t) = { x(1)) )2 with { x(0)) = x(0).

In order to obtain the mean square displacement we apply the Laplace transform
to (8) and using

b+ Ab'-a
s(S) = 2
9s() (b+s)+A(b +s)1*“ ©
we obtain
sx3¥s)  x40) 2006 +A"
s — . 10
(b+8)+A(b+s)-a—(b+Abl-9) (10)
Now, using the binomial expansion to (10) yields
x(t) = x(0))> =2C b+ Ab' -«
I t N log n n
< o bu = [(b +)L?1' )u E(g,1)+(1—a)n(4ua)du’ (v
n=0 ’
h
whnere d'n 2 (n + k)lyk
n) = —Iy = :
Ef(,v(y) - dyE‘l’V(y) £=0 k' (V + a(n + k}) (12)

It is noted that equation (11) shows a complicate form, but for a = 1 the Mittag-
Leffler function reduces to the exponential function, and the above result reduces

the one of normal diffusion from the ordinary diffusion equation or from the
in’gegro-diffezrential diffusion equation (3) with t]wxponential waiting time PDF [10],
{x () ={x(0) +2C(b+ Mt . For short times the mean square displacement is given
by

(x(t) - x(0))> ~2C b+Ab*-a t, (13)

and for long times it yields
> Cha(l-a)(1+Ab-a)  2C(b+ib'-9)

(e(t) = x(0))
+ t. 1

bal+A(l-a)be? 1+A(l-a)b@ (14)

We see that the mean square displacement presents normal diffusive regime for short

and large times. In general, the mean square displacement (11) begins with a normal
diffusion regime, then it develops anomalous diffusion regime at the intermediate times,
and eventually reaches a normal diffusion regime. These regimes can be viewed in figures
1and 2. In these figures we also compare the analytical solution for the MSD (11) with
the power-law function; the MSD is very close to a linear function.
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Figure 1. Plots of (x(f) - x(0))’ forC=1,b=0.3, A= 0.15 and a = 0.5. The
solid line is obtained from (11). The dashed dotted and dashed lines are the asymptotic
curves obtained from (13) and (14), respectively. The dotted line corresponds to the

power-law function 0.1022t"*".

Figure 2. Plots of (x(#) - x(0))* forC =1, b = 0,03, A = 0.o5anda = 0.7.
The solid lines are obtained from (11). The dashed dotted and dashed lines are
the asymptotic curves obtained from (13) and (14), respectively. The dotted line

corresponds to the power-law function 0.0935t"°"".

Now we consider the exact solution for the PDF p(x, t). It can be obtained from

= 1 E 1 -gs - z 1 -gs
ps(x, $) 2\f by Togsexp . Vv Bl oo, (15)

[10]

Substituting (9) into (15) yields

I
PG, t) = : dw® (w, x) cos (wt + 8 (w, X)), (16)
20 C(b+Abl-a) 0
where
V b
r(w)= @+ b2, O,(w)=arccos , (17)
r
r (@) = Aria (w)
x= t-a 2 _ whl-a 2
cos (1 - )0, (w)) - rl]"T + sin((1 - a)B (@) +)LW

) - S 1 a a

» (W) = arccos 1 , (19)

r r2(w)
T(O) —\[ x| Jﬁa(-u)-cos @
O (w,x) = 2 e Clh+mi=q 2 (20)
@
and
0 (w,x) = B?'(L_N- |x] 75 (@) sin 62 (©) . (21)
2 C b+ Abl-o 2
C(b+Abl-9) B

The asymptotic expansion of p(x, t) (for a given x and t > 1) is given by

l+A(l-a)b @
Ero YA (22)

1
p(x; ifl) == 2

(18)
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Figure 3. Plots of p(x, t) versus x coordinate with C =1, b = 0.03, a = 0.5, A = 0.15,
for the force-free case.

Equation (22) shows that the PDF p(x, t) has a decay similar to 1/\[? of the normal
diffon, and independently of the spatial coordinate. This is not a surprise because
the waiting time PDF (@) has a finite characteristic waiting time.

Now we show the PDF p(x, t) versus x coordinate for different times. In figure
3a, the PDF presents a cusp for t = 9 which is a hallmark of the CTRW model for
anomalous diffusion process in x coordinate; however, the PDF shows a smooth shape
for t = 35 due to the fact that the system describes normal regime for large times. In
figure 3b, the PDF presents a smooth shape due to the normal diffusion regime for short
times. It is worth mentioning that equation (16) is difficult to compute numerically for
small values of x. In this case we have checked our numerical results obtained from (16)
with those of a numerical inversion of Laplace transform algorithm [16]. Both results
are similar, except at the short distance.

Linear force. We now study the gise of a linear force F (x) = -mw*xc with the
waiting time PDF (5). We f'&t obtain the PDF p(x, t); it can be obtained from (3). In
order to do so, we employ the method of separation of variables pa(x, t) = Xu(x)Tn(?t);
substituting it into (3) yields

I I 4]
dIn@®y ! dTy(t1) d’f
- t t = = t t)T (t)dt 2
dt _96( ) dty dty = —‘undt _gl( n 1) a( ) ( 3)
and
CLFPXH(X) - _ﬂan(x), (24)

where p, are the eigenvalues. Then, the solution for p(x, t) is given by the expansion of

eigenfunctions 8
W) o = &
e, X, 0) = e T Ty () u@) Told), (25)

where ®©(x) = V (x)/ksT , V (x) is the potential given by F (x) = -dV (x)/dx, and
Ym (X) = 2%, (x). We note that the eigenvalue equation of the operator Lrp , (24),
is the same as the one of eigenvalue equation of ordinary Fokker-Planck operator [17].
Now, we only need to solve equation (23) that depends only on time. Applying the
Laplace transform to (23) yields

’-rsn(s) = s - (l -1n) SQS(S) (26)
Substituting gs(s) into (26) we obtain
Tut)=1-n b+Ab'-a
_r t o0 1 g
< ertu T 1A-m) b+ ABT Ul (~Auo)du, (27)

al+(1-a)k
0 s ki! (1-aks
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Figure 4. Plots of p(x, t) versus x coordinate with C =1, b = 0.03, 2 = 0.5, A = 0.15,
for the linear force case.

where we have omitted the term T,(0). Then, the solution for p(x, t |x,0) is given by

2 - ‘ _
plx, tx,0)= mzcjrkBT i %%Hn x\[i H, XVLE e*"%, (28)
where x = x mw?/ (kgT), C = kBT/mwz, un = n and H, (y) denotes the Hermite
polynornia]s.@ is worth mentioning that T.(t) reduces to Tu(t) = exp [-(a + A)nt] for
a = 1, which is the solution of the ordinary diffusion equation. In figure 4 we show the
PDF for different times.
To obtain the first two moments we sﬁtitute (3) into (6), and we obtain the
derivative of the first moment of PDF p(x, t) with respect to t

Mﬂ)__ft tl)d_(_x(ﬂ)_d]f

(t dt - 0 g ) dtl
c dlt [
+ ksTdt o gt-t) ) F(x)P(l’: t)dxdt, (29)

and the derlvﬁe of the second moment of PDF p(x, t) with respect tot

t

_(x"__ gt ”—xz—dt1+2c _g(t t)dt

1)) 1)
dt 4§ dty
20 d f: I oo <F }dxd ( )
(t-t x)plx, t t.. 0
+kBTdt . g 1) N (0)p( 1 3
Now we apply the Laplace transform to (29) and (30), and we arrive at
{(x(O)) [1 -
(x(s) = (31)
Ys gs(s)] s
and
2(0) [1 - 2Cqs(s
xg&?: (2(0)) [ +_QL£_)_. (32)

s sl + gs(s)] sl ags(s)J
We note that equation (31) can be solved for any waiting time PDF, and the solution
is given by 1
t

(x@ = 1- . g (t)dt, (33)
{ x(0))
In the case of g(t) (5), we have f
t
x(t) = x(0) 1 b+ bl e " E C At?)dt (34)
and ¢ )y { )y -

0

X(t) = x0) +2 k'iz— x2(0)
maw

x b+ Abl-a frpz_:m [+ ] i (atoydt . (35)
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0 n al4+(1-a)n

n=0
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Itis found that the first twgggnoments have complicated forms associated with the
Mittag-Leffler function. For a = 1 the Mittag-Leffler function reduces to the exponential
function, and all the above results reduce to those of the ordinary diffusion equation.
The thermal equilibrium is reached when t — oo, then we have ( xz(oo)) =
ksT/ma”.1f the system satisfies the special initial spatial condition as ( x(0)) =0 and
{ xz(O)) = kBT/mwz, {x(t)) =0and ( xz(t)) = kBT/me for all the time; therefore,
average of displacement and its second moment are independent of time.

3. Conclusion

We have investigated the uncoupled CTRW model with the waiting time PDF given
by (5) for force-free and linear force cases. We have presented analytical solutions for
the first two moments and probability distribution. We have shown, for the force-free
case, the system presents normal regimes at the small and large times, but it presents a
deviation from the normalgpgime at the intermediate times; we note that the solutions
for the first two moments can be described in terms of the generalized Mittag-Leffler
function. In figure 3 we show the PDF, and it presents cusp for the intermediate times
which is associated with the anomalous regime; this result reinforces the fact that the
cusp present in the PDF for anomalous regime is typical for the CTRW model (see the
cusp present in the PDFs for other waiting time PDFs [10,@]). For the linear force
F (x) = -mw’x, all the solutions presented in this work are described in terms of the
generalized Mittag-Leffler function.
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