Technology, Department of

Theses and Dissertations-Technology

Texas State University

Year~2008

Using Intelligent Vehicle Control Rules to Improve AMHS Performance in Highly Dynamic Manufacturing Environments

Handi Chandra Putra Texas State University-San Marcos, Dept. of Technology, handi.chandra@yahoo.com

Attudi

This paper is posted at eCommons@Texas State University. http://ecommons.txstate.edu/techtad/1

USING INTELLIGENT VEHICLE CONTROL RULES TO IMPROVE AMHS PERFORMANCE IN HIGHLY DYNAMIC MANUFACTURING

ENVIRONMENTS

THESIS

Presented to the Graduate Council of Texas State University-San Marcos in Partial Fulfillment of the Requirements

for the degree of

Master of SCIENCE

by

Handi Chandra Putra

San Marcos Texas August, 2008

USING INTELLIGENT VEHICLE CONTROL RULES TO IMPROVE AMHS PERFORMANCE IN HIGHLY DYNAMIC MANUFACTURING ENVIRONMENTS.

Committee Members Approved:

Dr. Jesus A. Jimenez, Chair

Dr. Clara M. Novoa

Dr. Jaime Hernandez

Dr. Vedaraman Sriraman

Approved:

Dr. J. Michael Willoughby Dean of Graduate College

COPYRIGHT

by

Handi Chandra Putra

2008

To my parents,

inspired,

and inspiring.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Dr. Jesus Jimenez, for his help, guidance, and help throughout the development of this thesis and my studies.

I highly appreciate all my committee members, Dr. Clara Novoa, Dr. Jaime Hernandez, and Dr. Vedaraman Sriraman for their valuable insights during the discussion sessions on my work. I would also like to thank Jesus Serna for his work on the simulation setup of this project.

I am also grateful for my parents and my sister for being supportive, and the most wonderful throughout all the moments of my life. My gratitude goes to my friends in my fellowship at Austin for their encouragements, and prayers. Lastly, I would like to lift my highest gratefulness to the Lord, who always upholds me with His righteous right hand (Isaiah 41:10).

This manuscript was submitted on July 3, 2008.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTSv
LIST OF TABLES
LIST OF FIGURES
ABSTRACTx
CHAPTER
I. INTRODUCTION1
Background1
Problem Statement
Research Purpose and Scope5
Proposed Procedure
Organization of Thesis7
II. LITERATURE REVIEW8
Dispatching rules8
Centralized Dispatching Rules9
Responding to Dynamic Environments
Decentralized Dispatching Rules11
Smart Vehicles12
Traffic Management (Norman, 2002)14

III. PROPOSED INTELLIGENT VEHICLE CONTROL RULE (IVCR)
AMHS Description
AMHS Simulation on AutoMod19
Experimental Environment
Experimental Setup
Rules
IV. EXPERIMENTATION
Design and Analysis of Experiment
Results
V. CONCLUSION AND FUTURE RESEARCH
REFERENCES
VITA46

LIST OF TABLES

Table		Page
1.	Experimental Factors	
2.	Experimental Cases	31
3.	Summary of Results in the Case of Number of Moves = 1 and	
	Lot Priority Ratio = 20-80	32
4.	Summary of Results in the Case of Number of Moves = 2 and	
	Lot Priority Ratio = 20-80	
5.	Summary of Results in the Case of Number of Moves = 1 and	
	Lot Priority Ratio = 10-90	
6.	Summary of Results in the Case of Number of Moves = 2 and	
	Lot Priority Ratio = 10-90	34
7.	ANOVA for Hot Lot Throughput	35
8.	ANOVA for Regular Lot Throughput	35
9.	ANOVA for Hot Lot Delivery Time	36
10	. ANOVA for Regular Lot Delivery Time	37
11	. Wafer Fabs Requirement	42

LIST OF FIGURES

Figure		Page
1.	Typical Wafer Fab Layout with the AMHS	18
2.	AMHS Interbay System	20
3.	Workstation-initiated Rule	25
4.	Vehicle-initiated Rule	25
5.	Deliver Algorithm	25
6.	Retrieve Algorithm	26
7.	Move Algorithm	27
8.	Hot Lot Delivery Times of 3 Rules (95% Confidence Interval)	
9.	Hot Lot Delivery Times of 2 Rules (95% Confidence Interval)	
10.	Regular Lot Delivery Times of 3 Rules (95% Confidence Interval)	
11.	. Regular Lot Delivery Times of 2 Rules (95% Confidence Interval)	

ABSTRACT

USING INTELLIGENT VEHICLE CONTROL RULES TO IMPROVE AMHS PERFORMANCE IN HIGHLY DYNAMIC MANUFACTURING ENVIRONMENTS

by

Handi Chandra Putra, B.A.

Texas State University-San Marcos

August 2008

SUPERVISING PROFESSOR: JESUS A. JIMENEZ

Automated Material Handling System (AMHS) is crucial for a 300-mm manufacturing fab as to reduce ergonomic related problems, wafer contamination, and wafer damage. The main purpose of the AMHS is to optimize the fabrication process by reducing the manufacturing cycle time, and increasing equipment utilization. Researchers have experimented with dispatching rules in order to optimize the wafers delivery in the AMHS. However, many proposed dispatching rules cannot anticipate dynamic, and frequent changes in the environment (i.e., vehicle breakdown, tool breakdown, changing demand, etc). Therefore, implementation of Intelligent Vehicle Control Rule (IVCR) can be a solution in solving this problem. The purpose of this thesis is to develop an IVCR useful in the design of vehicle-based AMHS that show statistically superior wafer delivery time (DT), retrieve time (RT), transport time (TT), and throughput than the static dispatching rules under tool breakdown, vehicle breakdown, number of moves, and load priority. The first contribution of this thesis is to simulate and compare all experimented rules (i.e. First-Encounter-First-Served [FEFS], modified Norman's algorithm [MODNORMAN], and IVCR) at different levels of detail. The second contribution is to explain the superiority of IVCR against other rules. A method for analyzing its performance and the influence of experimental factors are measured using the Design and Analysis of Experiments.