

Sydney Medical School Nepean

Level 5, South Block Nepean Hospital Derby Street Kingswood. NSW. 2747

Email - <u>benjamin.tang@sydney.edu.au</u>

29 December 2020

To Higher Degree by Research Administration Centre:

This report is concerning Velma Herwanto, a PhD candidate currently enrolled at the University of Sydney (student ID 460284686). I attest that changes to her thesis have been made to my satisfaction.

Yours sincerely,

Delijamis Jang

Benjamin Tang PhD, MMed(ClinEpi), MBBS, FCICM Associate Professor Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia Nepean Clinical School, University of Sydney, Australia

Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Australia.

IMMUNOMETABOLISM OF CIRCULATING LEUKOCYTES IN

PATIENTS WITH INFECTION AND SEPSIS

Velma Herwanto

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy

FACULTY OF MEDICINE AND HEALTH

THE UNIVERSITY OF SYDNEY

2020

TABLE OF CONTENTS

Preface	xii
Authorship attribution statement	xiii
Acknowledgements	xiv
Publications and presentations	xvi
List of abbreviations	xix
Abstract	xxii

Intro	duction		1		
1.1	Sepsis is	Sepsis is the final common pathway of infection leading to high morbidity			
	and mo	rtality	2		
1.2	Pathoph	nysiology of sepsis centralizes in immune response	3		
1.3	Massive	e immune response evokes aberrant mediators production in sepsis that			
	leads to	immune dysfunction	5		
	1.3.1	Hyperinflammatory response in sepsis	7		
	1.3.2	Immunosuppression contributes to more fatalities in sepsis	3		
	1.3.3	Mixed inflammatory response in sepsis	Э		
1.4	Pathoph	nysiology and diagnosis of immune dysfunction in sepsis	Э		
	1.4.1	Pathophysiology of immune dysfunction in sepsis	10		
	1.4.2	Diagnosis of immune dysfunction in sepsis	20		

1.5	Consequences of persisting immune dysfunction in sepsis24				
	1.5.1	Infection and long-term mortality due to persistent			
		Immunosuppression	.24		
	1.5.2	Persistent inflammation and accelerated immunosenescence post			
		sepsis	24		
1.6	Immund	ometabolism maintains energy supply of the immune cells	.25		
1.7	Mitocho	ondria may fail to maintain energy supply in sepsis	28		
1.8	Immund	ometabolic dysfunction in sepsis	30		
	1.8.1	Monocytes/ macrophages dysfunction	30		
	1.8.2	Lymphocytes dysfunction	33		
	1.8.3	Dysfunction of other immune cells	34		
	1.8.4	Other metabolic changes in sepsis	.34		
1.9	Linking	immune dysfunction with cellular metabolism in infection and sepsis –			
	what do	o recent studies tell us?	35		
1.10	Why is t	his study important	37		
1.11	Rationa	le to focus this study on peripheral blood mononuclear cells (PBMCs) –			
	an estal	olished model reflecting metabolic changes of the immune cells	38		
1.12	Rationa	le to focus this study on mitochondrial function and oxidative stress			
	pathwa	pathways – the prominent pathways involved in the pathophysiology			
	of infect	tion	38		
Refe	rences		.40		

Study aim and summary		5
-----------------------	--	---

Gene	e express	ion regulation in infection patients without and with developed sepsis52			
3.1	Backgro	Background			
3.2	Materia	l and methods54			
	3.2.1	Sample collection and preparation54			
		3.2.1.1 Subjects recruitment and case definition			
		3.2.1.1.1 Patients recruitment54			
		3.2.1.1.2 Healthy controls recruitment			
		3.2.1.2 Whole blood collection and total RNA extraction56			
	3.2.2	Library preparation and sequencing56			
	3.2.3	Trimming, alignment and normalization57			
	3.2.4	Statistical analysis and data visualization58			
3.3	Results				
	3.3.1	Subject characteristics			
	3.3.2	RNA sequencing results62			
	3.3.3	Enrichment analysis on K-means clusters identifies predominant			
		immune response and oxidative stress pathways in patients			
	3.3.4	Enrichment analysis on the DEGs reveals immune response, oxidative			
		stress and apoptosis as the most important pathways in infection68			
	3.3.5	Oxidative stress and apoptotic cell death show significant role in			
		sepsis and septic shock71			
	3.3.6	Eigengene module analysis unveiled seven modules with distinctive			
		Pathways72			

	3.3.7	Analysis of individual genes indicates alteration of mitochondrial	
		function in patients and immunosuppression in septic shock	76
	3.3.8	Gene expression were changed with improving condition	80
3.4	Discussi	on	.82
Refere	ences		87
Supple	ementar	y figures	90
Supple	ementar	y table	95

Imm	une cell	s metabol	ism in <i>in vitr</i>	o model of sepsis96	
4.1	Backgro	ackground			
4.2	Materia	al and met	l and methods		
	4.2.1	Sample o	collection and	d preparation97	
		4.2.1.1	Subjects re	cruitment97	
			4.2.1.1.1	Healthy controls recruitment98	
			4.2.1.1.2	Patients recruitment98	
		4.2.1.2	Peripheral	blood mononuclear cells isolation	
			4.2.1.2.1	Cryopreservation of PBMCs99	
			4.2.1.2.2	Thawing of PBMCs	
		4.2.1.3	Dead cell r	emoval	
	4.2.2 Stimulation of PBMCs with lipopolysaccharide – in vitro sepsis model		s with lipopolysaccharide – in vitro sepsis model100		
	4.2.3	Measurement of cellular metabolism		ular metabolism 101	
		4.2.3.1	Coating of	Seahorse microplate101	
		4.2.3.2	Hydration	of sensor cartridge101	

		4.2.3.3	Seeding of cells	102
		4.2.3.4	Seahorse XF Cell Mito Stress Test – measurement of	
			mitochondrial function	102
		4.2.3.5 N	Aeasurement of total protein amount – normalization .	103
		4.2.3.6 D	ata analyses	104
		4.2.3.7 D	rug optimization of Cell Mito Stress Test on frozen PBN	MCs 105
	4.2.4	Measure	ment of oxidative stress	105
		4.2.4.1	Measurement of mitochondrial superoxide	105
		4.2.4.2	Measurement of total cellular reactive oxygen species	(ROS) 106
	4.2.5	Measure	ment of apoptosis	106
	4.2.6	Statistica	al analysis and data visualization	107
4.3	Results			107
	4.3.1	Drug opt	imization for <i>in vitro</i> model of sepsis	107
	4.3.2	<i>In vitro</i> L	PS model mimic sepsis – mitochondrial function, ROS	
		productio	on and apoptosis	109
	4.3.3	Measure	ment of mitochondrial function in frozen PBMCs – titr	ation of
		drugs for	r Cell Mito Stress Test	
		4.3.3.1	Mitochondrial function – fresh vs. frozen PBMCs	111
		4.3.3.2	Titration of oligomycin and FCCP for frozen PBMCs	112
	4.3.4	Cellular r	metabolism in patients and healthy donors	113
	4.3.5	Dead cel	l removal	
4.4	Discuss	ion		119
Refe	erences			122

Imm	une cells	metabolism in infection patients without and with developed sepsis1	24			
5.1	Backgro	Background (including submitted manuscript) 125				
Follo	low up analysis of the improving patients164					
5.2	Materia	I and methods1	64			
	5.2.1	Patients recruitment and sample collection1	64			
	5.2.2	The assays1	64			
	5.2.3	Statistical analysis and data visualization1	64			
5.3	Results		65			
	5.3.1	Patients characteristics1	65			
	5.3.2	Cytokine profiles1	67			
	5.3.3	Recovery of cellular metabolism is observed in sepsis patients				
		who are improving on follow up1	67			
	5.3.4	Reduced oxidative stress is observed in patients with uncomplicated				
		infection who are improving on follow up1	68			
	5.3.5	No change is observed in apoptosis on follow up1	70			
	5.3.6	Clinical recovery is reflected in the changes of RHOT1, TP53 and				
		Bcl-2 gene expressions1	71			
5.4	Discussi	on1	72			
Refe	rences		References			

Immune cells metabolism in infection patients without and with developed sepsis:	
analysis on immune cell subsets	177

6.1	Background					
6.2	Materia	al and met	hods	178		
	6.2.1	recruitment	178			
	6.2.2	179				
	6.2.3	Cell stair	ell staining and purity check			
	6.2.4	Measure	ement of cell metabolism in cell subsets	181		
		6.2.4.1	Cell number titration for cell subsets			
		6.2.4.2	Drug titration for Cell Mito Stress Test			
	6.2.5	Oxidative	e stress and apoptosis in monocytes and lymphocytes			
	6.2.6	Statistica	al analysis and data visualization	182		
6.3	Optimiz	ation step	os – subset separation and optimization for cellular			
metabolism assay						
	6.3.1 CD14 ⁺ Monocytes			183		
		6.3.1.1	Separation and purity check			
		6.3.1.2	Determining cell seeding density	184		
		6.3.1.3	Titration of oligomycin and FCCP for monocytes	185		
	6.3.2	CD4⁺ T ly	mphocytes	186		
		6.3.2.1	Separation and purity check			
		6.3.2.2	Determining cell density	187		
		6.3.2.3	Titration of oligomycin and FCCP for CD4 ⁺ T cells			
	6.3.3	CD8+ T Ly	ymphocytes	189		
		6.3.3.1	Separation and purity check			
		6.3.3.2	Determining cell seeding density	190		
		6.3.3.3	Titration of oligomycin and FCCP for CD8 ⁺ T cells	190		

6.4 Results

6.4.1	Sample c	haracteristics	191
6.4.2	Measure	ment of cellular metabolism in isolated CD14 ⁺ monocytes, CD4 ⁺	
	and CD8 ⁺	⁺ T cells	191
	6.4.2.1	CD14+ monocytes from patients with sepsis demonstrate	
		impaired cellular metabolism	191
	6.4.2.2	Cellular metabolism in CD4 $^{+}$ and CD8 $^{+}$ T cells	192
6.4.3	Gated m	onocytes	193
	6.4.3.1	Oxidative stress on gated monocytes goes up with infection	
		and sepsis	193
	6.4.3.2	Oxidative stress in gated monocytes goes down in follow up	
		samples	194
	6.4.3.3	Apoptosis in gated monocytes goes down with infection and	
		sepsis	195
	6.4.3.4	Apoptosis in gated monocytes remains unchanged in	
		follow up samples	196
6.4.4	Gated lyr	nphocytes	197
	6.4.4.1	Oxidative stress on gated lymphocytes goes up with infection	
		and sepsis	197
	6.4.4.2	Oxidative stress in gated lymphocytes goes down in	
		follow up samples	198
	6.4.4.3	Apoptosis in gated lymphocytes goes down with sepsis	199
	6.4.4.4	Apoptosis in gated lymphocytes remains unchanged in	
		follow up samples	200

6.5	Discussion	201
Refer	rences	208

Summary and conclusions211				
7.1	Assessr	nent of fin	ndings	212
	7.1.1	Immune	response has important role in uncomplicated infection	
		while in s	sepsis, oxidative stress and apoptotic cell death have more	
		significar	nt roles	212
		7.1.1.1	Significance of these findings	213
		7.1.1.2	Study limitations	214
	7.1.2	Impaired	d immune cell metabolism in an <i>in vitro</i> model of sepsis	214
		7.1.2.1	Significance of these findings	215
		7.1.2.2	Study limitations	216
	7.1.3	Bioenerg	getic failure and increased intramitochondrial oxidative	
		stress ar	e observed in the immune cells of uncomplicated infection	
		and seps	sis	216
		7.1.3.1	Significance of these findings	217
		7.1.3.2	Study limitations	218
	7.1.4	Monocyt	tes and lymphocytes show increased oxidative stress in	
		uncompl	licated infection without impairment in mitochondrial	
		respirati	on 2	219
		7.1.4.1	Significance of these findings	220
		7.1.4.2	Study limitations	220

Refe	rences	223
7.3	Conclusions	222
7.2	Future directions	221

Appendices

Appendix One – Published manuscript – Accuracy of qSOFA to predict sepsis mortality	
in 121 studies including 1,716,017 individuals; a systematic review and meta-analysis2	224
Appendix Two – Abstract for oral presentation – Metabolic profile of peripheral	
blood mononuclear cells in patients who are at risk of developing sepsis	260
Appendix Three – Manual purification of total RNA from human whole blood	
collected into PAXgene Blood RNA tubes	265

PREFACE

Declaration

This thesis is submitted to the University of Sydney in fulfilment of requirements for the degree of Doctor of Philosophy. The work presented in this thesis is original except as acknowledged in the text. I, Velma Herwanto, hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution.

Signature:

Date: 29 July 2020

AUTHORSHIP ATTRIBUTION STATEMENT

In addition to the statements above, in cases where I am not the corresponding author of a published item, permission to include the published material has been granted by the corresponding author.

Student Name: Velma Herwanto Signature:

Date: 3 August 2020

As supervisor for the candidature upon which this thesis is based, I can confirm that the authorship attribution statements above are correct.

Supervisor Name: A/Prof Benjamin Tang

Signature:

Date: 3 August 2020

ACKNOWLEDGEMENTS

There are no proper words to convey my deep gratitude and respect for my supervisors, A/Prof Benjamin Tang, for his dedicated support, guidance and enthusiasm through my PhD study. He has inspired me to become an independent researcher and helped me realize the power of writing; Prof Anthony McLean, whose encouragement helped me in all the time of research and writing of this thesis. He is my role model of leadership who always aims to complete the tasks to the best of his and the staff abilities; Dr Ya Wang and Dr Maryam Shojaei, who trained me in the lab from zero and generously gave their time to offer me valuable comments toward improving my work. They became families who walked with me through my hardest time.

I am indebted to the people at Department of Intensive Care Medicine, Nepean Hospital: Dr Marek Nalos, which our accidental meeting opened up the opportunity to study overseas and who is kindly allow me to include his recruited patients for this study; Sally Teoh RN, who is memorable not only for her prompt support but also for kind care. There is no way to express how much it meant to me to have been a member of the Centre for Immunology and Allergy Research at the Westmead Institute for Medical Research with Ali Afrasiabi, Prof David Booth, Prof David Brown, Dr Fiona Mackay, Prof Graeme Stewart, Dr Grant Parnell, Jeremy Keane, Dr Jo Gamble, Prudence Gatt, Samantha Law, Prof Sanjay Swaminathan, A/Prof Scott Byrne. Your great advice proved monumental towards the success of this study. Exceptionally, I would like to pay my special regards to Dr Lawrence Ong and Dr Nicole Fewings who went through hard times together, cheered me on and enlightening me with abundant inputs; and Stephen Schibechi for all the troubleshooting and proofreading this thesis. To the collaborators for lending me their expertise to my technical problems, I am most grateful: Prof Klaus Schughart at Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany; Dr Tracy Chew at Sydney Infomatics Hub; and the facility managers of the Westmead Institute for Medical Research Dr Joey Lai, Suat Dervish, Dr Edwin Lau and Dr Eve Diefenbach. I also wish to thank all the staff from Westmead Emergency Department whose assistance were a milestone in the completion of this project: Dr Amith Shetty and Dr Kevin Lai in particular, all the consultants and nurses.

This work would not have been possible without the full financial support of the Indonesia Endowment Fund for Education and Nepean Genomic Research Group; and the constant support from the Dean of Tarumanagara University Faculty of Medicine, Dr Meilani Kumala, and Vice Dean, Dr Rebekah Malik, Dr Shirly Gunawan and Dr Ernawati.

Above all, I would like to express my gratitude to my parents-in-law, Mr Untung and Mrs Sri Endang Wahyuni, and the family of my brothers-in-law – Andi, Lidya, Anton, Olivia, Dr Agung, Dr Ayu – for their unfailing emotional support. I deeply thank my parents, Mr Herwanto and Mrs Sundari for their unconditional trust and endless prayer. It was their love that raised me up when I got weary; my brother Alvin Herwanto for his encouragement despite the long distance between us. Finally, I thank with love to my husband, Dr Gunawan, and my sons, James and Joaquin. Understanding me best as a physician himself, Gunawan has been my great companion, encouraged, entertained, and helped me get through this agonizing period in the most positive way. This work is dedicated to you.

Ad maiorem Dei gloriam.

ΧV

PUBLICATIONS AND PRESENTATIONS

Manuscripts

- <u>Herwanto V</u>, Nalos M, McLean AS, Tang B. Immune dysfunction in sepsis: diagnosis and treatment options. ICU Management & Practice 2018;18(1):40-43 (included in Chapter 1). *I co-wrote the drafts of the MS.*
- Tang BM, <u>Herwanto V</u>, McLean AS. Immune paralysis in sepsis: recent insights and future development. In: Annual Update in Intensive Care and Emergency Medicine 2018. 2018. p. 13-23 (included in Chapter 1). *I wrote the drafts of the MS.*
- 3. <u>Herwanto V</u>, Shetty A, Nalos M, Chakraborthy M, McLean A, Eslick GD, Tang B. Accuracy of quick Sequential Organ Failure Assessment score to predict sepsis mortality in 121 studies including 1,716,017 individuals: a systematic review and meta-analysis. Critical Care Explorations 2019;1:e0043 (refer to Appendix One). *I codesigned the study with BT, analysed the data and wrote the drafts of the MS.*
- 4. <u>Herwanto V</u>, Wang Y, Shojaei M, Khan A, Lai K, Shetty A, et al. Impaired peripheral blood mononuclear cell metabolism in patients at risk of developing sepsis: a cohort study. Submitted (included in Chapter 5). *I co-designed the study with YW, MS and BT, analysed the data and wrote the drafts of the MS.*

Posters and Presentations

- Herwanto V, Wang Y, Shojaei M, Tang B, McLean AS. Reduced cellular respiration and ATP production in an in vitri model of sepsis. 38th International Symposium on Intensive Care and Emergency Medicine, Brussels, Belgium, March 2018. Poster presentation.
- Herwanto V, Wang Y, Lai K, Shetty A, Shojaei M, Tang B, McLean AS, Booth DR. Metabolic profile of peripheral blood mononuclear cells in patients with low and high risk infections. Westmead Association Hospital Week Research Symposium, Westmead Hospital, Sydney, Australia, August 2018. Poster presentation.
- Herwanto V, Wang Y, Shojaei M, Lai K, Shetty A, Tang B, McLean A, Booth DR. Metabolic profile of peripheral blood mononuclear cells in patients who are at risk of developing sepsis. The International Sepsis Forum's 12th Annual Symposium, Bangkok, Thailand, October 2018. Oral presentation, the Best International Abstract (refer to Appendix Two).
- Herwanto V, Shetty A, Eslick GD, Tang B. Accuracy of qSOFA score to predict sepsisrelated mortality in 99 studies consisting of 588,883 patients: a systematic review and meta-analysis. The International Sepsis Forum's 12th Annual Symposium, Bangkok, Thailand, October 2018. Poster presentation.

- 5. <u>Herwanto V</u>, Wang Y, Shojaei M, Shetty A, Lai K, Chew T, et al. Mitochondrial dysfunction and its related pathways in sepsis. Nepean Research Day, Sydney, Australia, September 2019. Oral presentation
- Tang B, Wang Y, <u>Herwanto V</u>, Chew T. How to investigate host genomics in sepsis. Genomics, Sepsis & Intensive Care, Nepean Hospital, Sydney, Australia, October 2019. Oral presentation.

LIST OF ABBREVIATIONS

AAM	Alternatively activated macrophage
ADP	Adenosine diphosphate
APC	Antigen presenting cell
ATP	Adenosine triphosphate
Bcl-2	B-cell lymphoma 2
BSA	Bovine serum albumin
CAMs	Classically activated macrophage
CD	Cluster of differentiation
CI	Confidence interval
CRP	C-reactive protein
CTLA	Cytotoxic T lymphocyte-associated antigen
DC	Dendritic cell
DCFDA	2',7'-dichlorofluorescin diacetate
DEG	Differentially expressed gene
DMSO	Dimethyl sulfoxide
ECAR	Extracellular acidification rate
EDTA	Ethylenediaminetetracetic acid
ETC	Electron transport chain
FBS	Foetal bovine serum
FCCP	Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone
FDR	False discovery rate

GM-CSF Granulocyte-macrophage colony-stin

- GO Gene ontology
- HBSS/Ca/Mg Hank's balanced salt solution supplemented with calcium and magnesium
- HLA-DR Human leukocyte antigen DR isotype
- ICU Intensive care unit
- IFN Interferon
- Ig Immunoglobulin
- IL- Interleukin
- IL-7R Interleukin-7 receptor
- LAG Lymphocyte-activation gene
- LPS Lipopolysaccharide
- MDSC Myeloid-derived suppressor cell
- MFI Median fluorescence intensity
- mRNA Messenger ribonucleic acid
- mROS Mitochondrial reactive oxygen species
- mTOR Mammalian target of rapamycin
- NETs Neutrophil extracellular traps
- NK cell Natural killer cell
- NO Nitric oxide
- OCR Oxygen consumption rate
- OXPHOS Oxidative phosphorylation
- PBMC Peripheral blood mononuclear cell
- PBS Phosphate-buffered saline
- PCA Principal component analysis

PD-1	Programmed death-1
PD-L1/2	Programmed death ligand-1/2
PI	Propidium iodide
PICS	Persistent inflammation, immunosuppression and catabolic syndrome
PMN	Polymorphonuclear
QC	Quality control
RNA	Ribonucleic acid
RNA-Seq	RNA sequencing
RNS	Reactive nitrogen species
RORγt	Retinoic acid receptor-related orphan receptor-yt
ROS	Reactive oxygen species
RPMI media	Roswell Park Memorial Institute media
SIRS	Systemic inflammatory response syndrome
SOFA score	Sequential organ failure assessment score
SRS	Sepsis response signature
Т _н	T helper cell
T-bet	T-box transcription factor
Treg	Regulatory T cell
TLR	Toll-like receptor
TNF	Tumor necrosis factor
WGCNA	Weighted Gene Correlation Network Analysis

Abstracts

Immune dysfunction is a major complication of sepsis. It increases susceptibility to nosocomial infection and contributes significantly to sepsis mortality. Immune dysfunction in sepsis has been associated with alterations in cellular metabolism which manifest as mitochondrial dysfunction and reduced cellular energy production. However, those alterations have been shown in established sepsis patients. Data are lacking in patients who are at early phase of infection who are yet to progress to sepsis. Our study aims to address this knowledge gap. Here, we present findings of a study that investigates metabolic alterations in the immune cells of infection patients. In particular, we compare the findings between those who develop sepsis with findings in those who did not develop sepsis (uncomplicated infection patients) to identify key pathologic mechanisms that underlie the progression from uncomplicated infection towards complicated infection (that is, sepsis).

First, in an *in vitro* model of sepsis, our preliminary experiment on peripheral blood mononuclear cells (PBMCs) indicated reduced mitochondrial respiration with increased intramitochondrial oxidative stress. Second, impaired mitochondrial respiration, with increased intramitochondrial oxidative stress, was observed in the PBMCs of patients with sepsis recruited from the emergency department. The level of oxidative stress significantly correlated with the severity of mitochondrial respiration impairment. Third, the findings of impaired mitochondrial respiration and increased intramitochondrial oxidative stress were also observed in patients with uncomplicated infection, albeit to a lesser intensity. Lastly,

xxii

further study on the PBMCs subsets, monocyte and T lymphocytes, corroborated the findings of metabolic alterations in sepsis as well as in uncomplicated infection patients.

Altogether, our study found that impaired mitochondrial respiration is detected in the immune cells of patients with uncomplicated infection, as it is in sepsis. Intramitochondrial oxidative stress is among several factors inducing the mitochondrial impairment, raising a possibility of its role as a potential target for preventing immune dysfunction.