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Chapter I   Preliminary 
 

 

I.1. Background  

 

Identifying an outlier data in a larger group of data is a very important topic in 

statistical and data analysis. It is so, because the data we are identifying must be in 

clean condition, in other word, free of  any influences of occurrence of outliers. On 

the other sides, an outlier, is an abstract concept which is not easy to define. There are 

a number of definitions which are often used in daily practices, for instance, one 

defined by  Grubbs (1969), Hawkins (1980), Beckman and Cook (1983), Rousseeuw 

and van Zomeren (1990),  and one from Barnett and Lewis (1984). In this dissertation 

the author follows the definition given by Barnett and Lewis (1984). They  define an 

outlier to be one or more data which are not consistent among others.  

 

The word 'not consistent' on the definition is not easy to be formulated in  general 

situations. This reason makes people, up to now, develop better methods in  

identifying outliers. In the univariate case, we see various development of methods, 

for example  Irwin  (1925), Thomson  (1935) and  Pearson and Chandra Sekar (1936) 

in early XX century, Dixon (1950), Grubbs (1950), Tietjen and More (1972), Tukey 

(1977), Rosner (1975, 1983), Beckman and Cook (1983), Iglewicz and Hoaglin 

(1993), Barnett and Lewis (1984), Kuwahara (1997), and for much more recent ones  

Djauhari (1999, 2001, 2003).  

 

Next, in the multivariate case, discussions about development of methods in 

identifying outliers most people use Wilks's  (1963) as the starting point. As we can 

see in literatures, since then the problem of outlier identification for  multivariate 

cases has became a challenging  area of research and grows very rapidly. Today, its 

role can be found in every work based on multivariate data. Even for   groups of large 

data and high dimension such as in  data mining and knowledge discovery (Angiulli 
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and Pizzuti (2005)), and intrusion detection (Ye et al.(2003)). In line with  Angiulli 

and Pizzuti (2005), in the multivariate case there are two important problems need to  

take into account. The first one is the procedure of justification, and the second one is 

the efficiency or how fast algorithms work. These two problems are the main topics 

of this research. 

 

There are many procedures to identify outliers. One of them is by using the outliers 

labeling approach as an important stage. This stage is very useful to separate data 

suspected as outliers from the group of main data. Researchers proposed different 

methods and terminology in outlier labeling for the same purpose. In the univariate 

case, it is known the Tukey labeling method (1977, p. 44) which says that data 

outside the fence as 'unclean data'. In the multivariate case, there are many ways of 

labeling, for example are ones proposed by Rousseeuw (1985), Hadi (1992), 

Rousseeuw and van Driesen (1999), Pan et al. (2000), and Pena and Prieto (2001).  

Rousseeuw (1985) introduced two criterias to separate data into two groups, which 

they called as 'good' and 'not good' group. The first is the criteria of minimizing the 

determinant of covariance (minimum covariance determinant or is abbreviated as  

MCD) and the second is the criteria of minimizing the volume of ellipsoid (minimum 

volume ellipsoid or is abbreviated as MVE).  Hadi (1992) uses the modified MVE or  

MCD  (modified MCD abbreviated as MMCD) to ensure nonsingularity of 

covariance matrix. This criteria is used to separate the sets ‘basic’ and ‘non-basic’ 

data. In the development, MCD is appreciated broader and better than MVE because 

the effectivity and efficiency of the algorithm (Rousseeuw and van Driesen (1999)). 

Though, the efficiency of MCD is still unsatisfactory. This fact had brought Hadi 

(1992) to introduce the MMCD which ensured that the determinant of covariance 

matrix in every iteration is positive. Then, Hawkins (1994) offered an algorithm 

which is called the feasible solution algorithm (FSA) which ensured the optimal 

solution for  MCD through a probabilistic approach. Next,  Rousseeuw and van 

Driesen (1999) introduced an algorithm which is called the fast MCD (abbreviated as  

FMCD) which improves the performance of MCD. Almost in the same period,  Billor 
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et al. (2000) introduced the block adaptive computationally efficient outlier 

nominators (BACON) algorithm which improves the efficiency in time of 

computation. A couple  years ago, Werner (2003) studied about  MVE and MCD, he 

concluded that the FMCD in general is the best. 

 

The labeling carried out by  Pan et al. (2000) and Pena  and Prieto (2001) gave a 

different direction. The approach  used by Pan et al. (2000) is  a projection along the 

axis generated  by unit vectors, thus the results of  projection spread out as uniform as 

they can. Meanwhile, Pena and Prieto (2001) proposed to separate the groups of  

suspected data among the ’good’ ones by using an orthogonal projection along p2  

axis, where the first p orthogonal axis maximize the kurtosis and the second p 

orthogonal axis minimize the kurtosis. 

 

The  projection approximation method is not efficient compared  to MVE and MCD, 

especially for large data of high dimension. Thus our attention will be focused to 

MCD, especially    FMCD, because   MCD has accepted more attention and good 

appreciation, as it has  robust property of high breakdown point (BP). Eventhough, 

Werner (2003) showed that FMCD still takes longer time for large data of high 

dimension. 

 

In this dissertation the author proposes a similar method to FMCD proposed by 

Rousseeuw and van Driesen (1999) with different criteria. Different with FMCD that 

uses the MCD criteria, the author proposes a criteria to minimize the vector variance 

(MVV). As a measure of multivariate dispersion, the vector variance was proposed 

by Suwanda and Djauhari (2002). This criteria will have a better efficiency than the  

FMCD, of the same effectivity. 
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I.2. Objective of the Research and Problem Formulation 

 

The process of  outlier identification consists of two stages, i.e.  labeling and testing. 

The purpose of the labeling stage is to separate suspected data as outlier from the 

group of main data. Next, the purpose of testing stage is to find out whether the 

suspected data can be classified as outlier. The purpose of this research is to develop 

the procedure of outlier labeling which has robust property of  high breakdown point 

(BP) and having high algorithm efficiency. 

 

In this dissertation the author proposes the MVV criteria for  labeling process. 

Suppose   is a covariance matrix of population  where the data lies. The 

determinant of  , i.e.  Det( ), and the sum of all diagonal elements of 2 , are two 

measures of multivariate dispersion. Det( ) is normally called a  generalized 

variance  or covariance determinant  and ( )2Tr , or the sum of all diagonal elements 

of   2 , is called a vector variance. Both measures of dispersion have their own 

advantages and weaknesses  (Djauhari , 2005b). As a measure of dispersion, the 

vector variance has much lower complexity level of time    than    Det ( ) . Based on   

these facts, we hope that the using of MVV on the labeling process with the same 

effectivity level, will be more efficient than  FMCD. 

 

 

I.3. Literature Study 

 

Studies about  outlier have been a focus of many researchers for very long time, even 

according to Werner (2003),   awareness on outlier occurrence had emerged since 

early  XVI century, it was when Francis Bacon on  1620 wrote about the importance 

to know phenomenon of nature deviations.  
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A couple of researchers give various meaning to the outlier. For example,  Grubbs 

(1969) defines an  outlier to be an observation which seem to be clearly deviated 

among the others. Hawkins (1980) interprets an  outlier as an observation which 

deviates quite away from the other observations so it gives a suspicion that  the 

observation is generated by different mechanisms. Meanwhile  Beckman and Cook 

(1983) interpret an outlier as data  which is discordant  to the researcher or 

contaminating data  (contaminant), i.e. one come from  distribution which is different 

with the distribution of the main group of data. Rousseuw and van Zomeren (1990) 

define an  outlier to be contaminating  data. Next,  Barnett and Lewis (1984) define 

an outlier to be data which is inconsistent relative to the other group of data. In 

connection with modeling,  Becker and Gather (1999)  define an outlier to be 

observations which are away from the group of main data and possibly do not follow 

the assumed model. The study of  outlier in this dissertation uses the definition given 

by Barnett and  Lewis (1984). 

 

Various procedures in identifying data which is considered to be 'inconsistent' are 

rapidly developing from time to time, both in the univariate case and in multivariate 

case. For instance, in the univariate case,  Irwin (1925) proposed that the deviation of 

the mean as the criteria of  outlier, Thomson (1935) developed Irwin's idea  (1925) by 

proposing a new measuring tool, i.e. the ratio between the deviation from its mean 

and sample's standard deviation. The Statistics proposed by Thomson (1935) 

apparently has a very big impact to further development. Pearson and Chandra Sekar 

(1936) particularly conscientiously discussed  that statistics, Dixon (1950) did an 

analysis about  the extreme value for contamination data based on the statistics 

proposed by Thomson. Next, Grubbs (1950), Tietjen and  Moore (1972) and  Rosner 

(1975) built a measure to detect  outlier based on the philosophy of  Thomson's 

statistics. Grubbs (1950) proposed a statistic to test the largest or smallest data that is 

suspected as outliers. Tietjen and More (1972) developed Grubbs's research  (1950) 

to test  k ( )1k  extreme data that deviated away from the group of the other ( )kn −   

data simultaneously through the gap, i.e. the distance between the ( )kn − th extreme 
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data and the ( )1n k− + th extreme data. Next, Rosner (1975) introduced  generalized 

extreme studentized deviation (GESD) which is a development of the idea of  Tietjen 

and More (1972) to test several  outliers simultaneously. For more general purposes, 

Rosner (1983) gave a table of critical values of GESD. In contrast to   Beckman and  

Cook (1983) which figured out a direction of research for the univariate case, in  

Iglewicz and Hoaglin (1993) and Barnett and Lewis (1984) are brought a comparative 

study of various identification methods. Meanwhile in  Kuwahara (1997) was 

proposed a history of the development and applications of  outlier detection. The 

using of  ESD is normally based on an approximation distribution. Having very good 

properties, ESD (Iglewicz and Hoaglin (1993)), Djauhari (1999) proposed the exact 

procedure. Five years ago,  Djauhari (2001) perfected the  ESD method. The exact 

critical points of  ESD were given in Djauhari (2003) through   beta inverse function. 

 

In the multivariate case, say  p-variate, problems encountered are not so simple as in 

the univariate case. For 2p , different with the univariate case, a visual approach is 

more difficult to carry out. Researches in method of visualization for example was 

carried out by Shone and Fung (1987). Therefore, in the multivariate case, the 

analytical approach  becomes a central approach. Here are a number of analytical 

approaches. Wilks (1963) introduced a method of test based on  ratio of volume of a 

parallelotop. Because it is very difficult to define the critical points, Wilks only gave 

approximation value to the critical points for one and outliers. Besides that weakness, 

the Wilks's method has an advantage, i.e the candidates of outlier need not to group. 

Gnanadesikan and Kettenring (1972) detected several  outliers consecutively through 

an analysis of principal components. They proposed a statistics test which is based on 

the Mahalanobis distance. The maximum value of statistics test is equivalent to the 

statistics test of single outlier of Wilks (1963). Rolfh (1975) tried to introduce a 

simultaneous testing of several outlier through the gap test. What is meant by a gap is 

the maximum distance between two groups of data which is measured by using  the 

single linkage distance or the minimum spanning trees (MST). The use of  MST here 
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need to be looked at very carefully, due to possibility to be more than one MST. 

Djauhari (1996) gave a necessary and sufficient condition for the uniqueness of MST. 

In case that the  MST is not unique, the  affectivity of Rolfh’s method need to be 

investigated. 

 

Basically, attempts to  identify outliers in the multivariate case refer to the following 

philosophy. How to transform random vectors to be random variables so that 

candidates of outlier will be seen more clearly. This philosophy implicitly is used by 

Derquenne (1992). The most popular transformation is the Mahalanobis distance. 

This can be found in almost literatures of multivariate analysis, including in outlier 

studies. A very comprehensive book concerning outlier study is one written by 

Barnett and Lewis (1984). 

 

On implementing the Mahalanobis distance, researchers are divided into two groups. 

The first one is ones who combine with the projection method, and the second one is 

ones who work directly in observation space without doing the projection. The 

purpose of the projection method is to find subspaces  of low dimension, so that the 

data analysis is easier to carry out (Friedman (1987)). Some researchers who develop 

this method are Pan et al. (2000), Pena and Prieto (2001), and Hardin and Rocke 

(2004). They are classified to the second group, i.e. ones who use the Mahalanobis 

distance in  observation rooms. But, this way is very sensitive to masking effects. To 

handle this problem, the method of  robust estimator introduced by Huber (1964) is 

applicable as theoretical foundations of the construction of distance which is robust 

Mahalanobis. 

 

Some researchers who did the robust distance on identifying  outliers are Rousseeuw 

and van Zomeren (1990), Hadi (1992), Hawkins (1994), Becker and Gather (1999), 

Rousseeuw and van Driessen (1999), and Werner (2003). They proposed  statistics 

test in form of robust Mahalanobis distance, by firstly finding the robust estimator of 

locations and covariance matrices. If the classic estimator is defined by involving the 
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whole set of data, the  robust estimator is built based on subsets consist of h data. The 

value of  h is determined in such a way so that it is obtained an estimator of high BP 

estimator. 

 

Various methods of robust estimation can be found in literatures. Rousseeuw (1985) 

introduced MVE and MCD methods with  1
2

n
h

 
= + 
 

 and n is the size of the sample. 

The notation  z  here is the greatest integer but less than z. Rousseeuw and van 

Zomeren (1990) proposed the use of MVE to choose subsets having minimum 

volume of ellipsoid and covers at least h data. Hawkins (1994) introduced the feasible 

solution algorithm (FSA) to determine  h  data which give covariance matrices of 

minimum determinant. For the same sake, Rousseeuw and van Driessen (1999) 

proposed   FMCD. The difference between the two methods lies in the process of 

determining h  data. It was mentioned by Hardin and Rocke (2002), also  Werner 

(2003) that  FMCD is faster than   MVE, MCD or even than FSA. 

 

FMCD has a very impressive algortihm efficiency (Werner (2003)). But, according to 

the author, this thing happens only on multivariate data of low dimension. For large 

data of higher dimension, the efficiency of of the   FMCD algorithm is worsening . 

This is due to computations of the determinant of covariance matrices, which takes 

time of order ( )pO 2   by  Cholesky’s method. Here p is the number of variables. This 

has motivated the author to propose, in this dissertation, the use of the MVV criteria 

to estimate locations and covariances of robust property and high  BP. It is clear that 

the trace computation of a matrix is much simpler than the computations of 

determinant. In contrast to the computation of determinant which takes time of order 

( )pO 2 , the computation of trace only takes ( )2pO . 
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I.4. The Process of the Research 

 

Eagerness to develop an outlier detection method of Pena and Prieto (2001) has  

initiated this research. They detect outliers through two stages, the outlier labeling 

and the outlier testing. Contrasted to their method which use the projection method 

that maximized and minimized the coefficient of kurtosis, for the same sake the 

author proposes a more efficient method, i.e the minimum spanning tree (MST) 

method. This method was inspired by one proposed by Rohlf (1975) and  Djauhari 

(1996). Another result of this research is that the author improves the performances of 

critical points proposed by Pena and Prieto (2001). For the same sake, the author 

proposes the exact distribution, rather than the asymptotic distribution.    

 

The method developed by the author in fact still has many weaknesses, particularly to 

masking effects. To reduce these weaknesses, the author has tried to develop a 

method in outlier labeling of robust property. Some robust approaches carried out to 

label outliers are MVE, MCD and FMCD. Study on the three methods, for small and 

medium size of data, concludes that MVE gives the longest time and FMCD is the 

most efficient method.  

 

Next, the experiment is carried out to large data of high dimension. From the 

experiments it is obtained that FMCD still needs long enough time. Even for the case 

of dimension more than 100 and more than 1000 data, a computer of Pentium 3/1400 

some times fail to compute the FMCD estimator. This fact has attracted the author to 

develop MVV. 

 

Some properties of MVV will be further discussed on the next chapter. In the process 

of outlier labeling, MVV is more efficient than FMCD. From the results of simulation 

attached in Appendix  E, it is concluded that MVV has the same effectivity level with 

FMCD. An open problem can be developed on further researches is the distribution 
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of distance of robust property.  This distribution will be used to test whether 

observations labeled as outliers are really outliers. 
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Chapter II   Various Robust Mahalanobis Distance 

 

 

II.1. Approaches in  Outliers Identification 

 

Identifying a multivariate  outlier is not trivial as in the univariate case. Even, 

Rousseeuw and van Zomeren (1990) stated that it is not easy to do that  when the 

number of variables  p is larger than  2. In this case, a simple diagram such as 

scattering diagram is unable to figure out positions of every data in a p dimensional 

space. Further, a multivariate outlier need not to be an  outlier on each variable 

involved, as seen in the illustration on Figure II.1 below.  

 

 

 

         Figure II.1. An illustration of bivariate  outlier phenomena 

 

 

The same thing with the masking effect problem  masking and swamping which 

frequently appears. Because of various complicated problems above , Gnanadesikan 

and Kettenring (1972) stressed that  attempts in seeking procedures on outlier 

identification were fruitless. But, a good method must be specific and sensitive. 

Specific means that it is able to say that a 'good' data is really good, and sensitive 
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means that it is able to say that a 'bad' data is really bad (Werner (2003)). The concept 

of sensitive developed more operational after Hampel et al. (1985) introduced the 

influential functions. 

 

As it is discussed in the Preliminary chapter, the multivariate  outliers  identification 

is normally carried out by transforming  random vectors to be random variables 

(Derquenne (1992)). The main tool is the Mahalanobis. See, for instance, 

Gnanadesikan and Kettenring (1972), Barnett and Lewis (1987), Pena and Prieto 

(2001), Werner (2003), and Djauhari (2004). Unfortunately, the distance is not 

suitable for groups of contaminated data. Therefore a  Mahalanobis distance of  

robust property is very urgent to improve  BP (see Lopuhaa and Rousseeuw (1991) 

and Becker and Gather (1999)). 

 

Basically, there are three approaches on outlier  identification. The first, is one based 

to distances including non-robust  distance as stated by Derquenne (1992) and   

robust distance generated through  MVE, MCD, MMCD, FSA, FMCD, and BACON. 

The usage of  robust distance is to obtain location estimators and covariance matrices 

of robust property. Dealing with the robust estimator, Hampel (1974) introduced an 

estimator to both parameters  based on the influencial function, Campbell (1980) 

estimates only the covariance matrix, Hampel et al. (1985) developed a robust 

estimator in more comprehensively than one introduced in Hampel (1974), and 

Woodruff and Rocke (1994) estimated a location parameter estimator and covariance 

matrix on   matrix of large data. Dealing with  MVE, Serfling (1980) gave a deep 

discussion about  volume of ellipsoids, Hawkins (1993) and Grambow and Stromberg 

(1998) gave an algorithm, and  and Werner (2003) gave a performance  analysis of 

MVE. Further, dealing with MCD, Croux and Haesbroeck (1999) studied the 

efficiency of MCD, Rousseeuw and van Driessen (1999) gave the FMCD algorithm. 

Werner (2003) showed that in general,  FMCD is better than MVE. 
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The second,  is an approach based on  labeling such as proposed by   Rolfh (1975)  by 

using  MST. An efficient algorithm to determine MST  was suggested by Djauhari 

(1996).  Kitagawa (1979), Rocke and Woodruff (2000) and Rocke (2002) introduced 

labeling by using method of data grouping.  Another labeling approach was proposed 

by Becker and Gather (1999) by defining the ‘outlier area’, Pan et al. (2000) and Pena 

and Prieto (2001) through the projection pursuit. 

 

The third, is a non distance approach such as proposed by Wilks (1963). This method 

was then developed by Caroni and Prescott (1992) to test several  outliers by 

sequentally using the statistics of  Wilks. Another nondistance approach was 

introduced by  Cleroux et al. (1986) and Lazraq and Cleroux (1989) which identify an 

outlier based on the RV coefficients,  Shone and Fung (1987) who identify the 

candidates of  outlier through  graphic, and  Viljoen and Venter (1999) who improve 

the performance of the method of Caroni and Prescott (1992) by using MCD. 

 

Taking into account that FMCD is having very good properties in effectiveness on 

one side (Werner (2003)) and on the other side having low efficiency  for data matrix 

of high dimension, the focus of this research are: 

1. Development of the criteria of location estimator and covariance matrix of 

robust property. 

2. Outlier labeling based on the Mahalanobis robust which is defined based on 

the estimator on the point 1 above. In the following sub chapter will be 

proposed various Mahalanobis distance approaches based on MVE and MCD. 

 

II.2. Robust  Mahalanobis Distance 

 

Suppose  nXXX





,,, 21   are random sample of size  n having ( ),


pN  where    is 

of positive definite.  The vector of sample mean X


 and sample covariance matrix S 

is, 



 14 

X


 = 
1

1 n

i

i

X
n =

  dan S = ( )( )
1

1

1

n t

i i

i

X X X X
n =

− −
−
  

 

The distance ( ),id X X
S

, where ( )2 ,id X X
S

 = ( ) ( )1
t

i iX X X X−− −S , is called the 

Mahalanobis distance of  iX


 to X


. 

 

Eventhough the  Mahalanobis distance is very wellknown in practice, but it is not 

robust. Occurance of one or more  outliers  can significantly  change the value 

( ),id X X
S . This happens, because X


 and S as estimators of   and   are not  

robust estimators. Therefore the Mahalanobis distance ( ),id X X
S

 is also not robust. 

Hence, its usage in identifying  outliers  is sensitive to the masking effect, and also 

probably the  swamping effect. 

 

Barnett and Lewis (1984, p. 114) says that a  masking effect is an effect  which 

causes  outliers are undetectable due to covered by another  outliers. A swamping 

effect is the converse, i.e. non outlier data detected as outlier.   Masking effects are 

frequently found in the process of one by one  identification of several outliers. 

 

II.2.1. The Notion of the  Robust Statistics 

 

Since  assumptions of normality, linearity and independence stick on the classic 

estimation methods frequently  are not satisfied,  Huber (1964) introduced the robust 

estimator.. One of the goal, as it was stated by  Hampel et al. (1985), is to identify the 

deviation of data, or  outlier.  Compared to the classic methods, the  robust statistics 

will give a clearer  variability description between an outlier and ’good data‘, the 

classic statistics will vaguely the difference. Dealing with  robustness of a statistics, 

some researchers  give similar definitions, eventhough using different context, i.e., as  
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an insensitivity to a small deviation of assumption  (see Huber (1980, p. 1), Hoaglin, 

Mosteller and Tukey (1983, p. 2) and Hampel et al. (1985, p. 6). Measures of 

robustness are normally stated by the breakdown point (BP).  

  

II.2.2  Affine Equivariant Property 

 

The affine equivariant is very good property of an estimator, because it is not 

influenced by affine transformation. Consider random samples nXXX





,,, 21  of 

random vectors  X  of location parameter  pT   and scale parameter  C in the 

space of pp symmetric matrices. Suppose  X defines an  n p  matrix where the  k-

th row is t

kX . A location estimator  ( )X p

nT   is said to have the affine equivariant 

property if for every vector  pb  and every nonsingular pp  matrix the 

condition  

( ) ( )AX A Xn nT b T b+ = + , 

holds (Rousseuw, 1985). 

 

An estimator of scale   ( )XnC , which is in form of an pp  matrix, symmetric and 

positive definite is  affine equivariant  if for every vector  pb  end every pp  

non singular matrix   A the following condition holds 

( ) ( )AX A At

n nC b C X+ = . 

It can be seen that when an estimator is having the affine equivariant property, it will 

not get influenced by an affine transformation.  This good property will be a 

condition in searching of   robust statistics. 

 

The location estimator and scale estimator of  maximum likelihood method,   

( )XnT  = 
=

n

i

iX
n 1

1 
  and  ( )XnC  = ( )( ) ( )( )

1

1

1

n
t

i i

i

X T X X T X
n =

− −
−
  
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is affine equivariant but it is not robust, because occurrence of an  outlier (even only 

one) is able to shift  ( )nT X  far enough. In general, Rousseeuw (1985) says that M-

estimator, which is a generalization of the maximum likelihood estimator, for 

multivariate data are mostly  affine equivariant but is of small BP, i.e. at most 
1

1p +
. 

 

II.2.3. Two Basic Concepts of  Robust Estimation 

 

1. Breakdown Point  

A quantitative measure to describe the concept of robustness is  breakdown point 

(BP). This measures how many data can be changed to be infinity before they 

meaningless crushed to bits. Several researchers such as  Hampel et al. (1985 p. 41), 

Huber (1980, p. 13), Rousseeuw (1985), Kotz and Johnson (1985 p.158), and 

Rousseeuw and Leroy (1987  p.10) gave interpretations of  BP both from the context 

of population and from the context of sample. This dissertation refers to the 

interpretation given by Kotz and Johnson (1985 h.158) and Rousseeuw and Leroy 

(1987) from the context of sample. They define BP to be the smallest fraction of data 

which causes the value of estimator to be infinity when the value of all data in the 

fraction are changed to be infinity. Applying this definition, it is clear that in the 

univariate case, the median has BP = 0,5 and the mean of sample has BP = 
1

n
. 

 

The concept of BP is highly related to the concept of estimator bias. Concerning with 

the bias effect, Franklin and Brodeur (2005) say that the purpose of the robust 

estimation is to produce an estimator which is free of influence of occurrence of 

outliers by lessening  the bias.  The relation between  BP and the value of bias will be 

discussed in the following paragraph.  
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  Consider  ( )XnT  and ( )XnC  on II.2.3. Suppose the estimator  ( )XnT  becomes 

( )*XnT  if the value of m  data are changed. Rousseeuw and Leroy (1987) define  BP, 

for sample of size  as follows 

( ) ( ) ( )
*

*

X

, , sup X Xn nbias m T X T T= −  

which measures the greatest difference ( )*XnT  and ( )XnT . Rousseeuw (1985)  

defines BP as follow , 

( )* ,n T X = ( )min , , infinite .
m

bias m T X
n

 
 
 

 

 

Suppose the  m data which the value are changed to be infinity imply that 

( )X,T,mbias


is infinite. If the value of (m – 1) data among them are changed to be 

infinity do not imply ( )X,T,mbias


to be infinite, then BP = 
m

n
. In the univariate 

case, the value of BP for some location estimators mentioned Hampel et al. (1985) 

the least is of the sample mean  X  , i.e. 
1

n
, and the greatest is of the   median, i.e.  

0.5. The BP value  of the kurtosis and the studentized range  are respectively 0.21 and 

0.043. In the multivariate case, the vector X  of sample mean is having BP = 

( )* 1
,n X

n
  = . Some literatures say that an estimator which is assumed to be good is 

one of BP  0.25 . 

 

2. Influencial functions 

Beside  the concept of  BP, another important concept which is used in seeking robust  

estimator is the concept of influential function, abbreviated as IF. The role of IF is to 

measure the magnitude of influence of disturbances on the estimator caused by 

existence of very small change on value of data. Hampel et al. (1985) introduced the 

concept of influential function as follow . 
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Suppose 1 2, , , nX X X  are random sample of random variable X  of distribution 

function F. If nF  is  the function of empiric distribution and x  is the degenerate 

distribution in  x,   

( )
1,

0,
x

t x
t

t x

=
 = 


 

then  nF  can be written as  
=

=
n

i

xn in
F

1

1
where  nxxx ,,, 21   are realization 

1 2, , , nX X X . Consider the statistics, 

nT  = ( )XnT  = ( )n nT F  

 and the sequence of statistics  1, nTn  for every possibility of sample n . Here 

( )n nT F  is an estimator of a parameter on the distribution function F . Suppose the 

estimator ( )n nT F in  the form of functional. This  means that ( )n nT F = ( )nT F  for 

every  n and nF  where T is a functional where the domain in the set of all 

distributions  in which T is defined so that , 

( )n nT F p⎯⎯→  ( )T F  

converges in probability for n⎯⎯→ . Here  ( )T F  is the asymptotic value of the 

sequence of estimators  1, nTn . Under this assumption, IF of T on F is defined as, 

( )
( )( ) ( )

0

1
IF , , lim

xT F T F
x T F



 

→

− +  −
=  

provided the limit exists. For example, if  F is replaced with 1nF −  and we take  
1

n
 = , 

then for n⎯⎯→  it follows that, 

( ) ( )1 1 1

1 1
IF , , 1n n x nx T F nT F T F

n n
− − −

   
⎯⎯→ − +  −   

   
. 

Therefore, IF measures  (through approximation) n times of changes in   the value of 

T which is caused by an addition of an observation x on a  large sample of size (n–1). 
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In the case that  x is an  outlier, IF explains the influence of contamination of  x  in 

defining the estimator  ( )1nT F −
. 

 

 

II.3. Some Robust Mahalanobis Distances 

 

II.3.1 Minimum Volume Ellipsoid (MVE) 

 

The  minimum volume ellipsoid  (MVE) method was introduced by  Rousseeuw 

(1985) to estimate location parameters and covariance matrices. The concept of  

MVE  was explained more clearly by Rousseeuw and Leroy (1987  p.258) as an 

attempt to determine the location estimator and covariance matrix based on 

1
2

n
h

 
= + 
 

 data  which give the minimum volume of ellipsoid among all of the sets 

of h possible data. Based on these h data, then it was carried out an estimation to the 

parameters. This estimator is then used to generate the robust Mahalanobis distance. 

In the development, the value h has not given a satisfied result yet. Next, Rousseeuw 

and  van Zomeren (1990) showed that the optimal value of  h is  
1

2

n p
h

+ + 
=  
 

. This 

is the value that is used until now. 

 

Suppose nXXX





,,, 21  are random samples of size  n picked up from a p-variate 

distribution of location parameter  and positive definite covariance matrix  . The 

estimator  MVE for the pair  ( ),   is the pair  ( ),MVE MVET C  which gives,  

( ) ( ) 1 2Card t

i MVE MVE i MVEi X T C X T a h−− −    
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with  
1

2

n p
h

+ + 
=  
 

 and constant  2a  = 2

5.0;p , i.e. the median of chi-squared 

distribution of degree of freedom  p . The estimator  MVE is an affine equivariant 

estimator, and of high BP i.e. 
2( 1)

2

n p

n

− −
.  See  Rousseeuw  and Leroy (1987). 

 

Based on the estimator  MVE the robust Mahalanobis distance of 
iX  with respect to 

MVET , written  ( ),MVE i MVEdR X T , is defined through the quadratic form as , 

( )2 ,MVE i MVEdR X T = ( ) ( )1
t

i MVE MVE i MVEX T C X T−− −  

The good property of  MVE determined by the  robust property of high  BP, 

apparently does not guarantee the popularity. This is because of the algorithm  

efficiency which is not high (Werner (2003)), especially for large size data of high 

dimension. Therefore, in this dissertation the MVE will not be discussed too far. 

 

 

II.3.2 Minimum Covariance Determinant (MCD)  

 

Together with MVE, Rousseeuw (1985) also introduced the  minimum covariance 

determinant (MCD) method. The purpose of both method are the same. The 

difference is only on the criteria they used.  Contrasted to   MVE which uses the 

minimizing volume of the ellipsoid criteria based on 
1

2

n p
h

+ + 
=  
 

  data,   MCD 

uses the minimizing  determinant of the covariance matrix criteria based on the h 

data. Just like  MVE, the estimator  MCD also is of  affine equivariant property of the 

same  BP, i.e. 
2( 1)

2

n p

n

− −
. See  Rousseeuw and Leroy (1987). 

 

There are many proposed algorithms to determine the  MCD estimator, for instance 

are by  Hadi (1992), Hawkins (1992), Hawkins and Olive (1997), Rousseeuw and van 
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Driessen (1999), and Billor et al. (2000). Hadi (1992) introduced the MMCD 

algorithm, a modified  MCD, which ensures that in every iteration, the determinant of 

covariance matrix is positive. Hawkins (1992) introduced the  feasible solution 

algorithm (FSA) and Rousseeuw and van Driessen (1999) introduced the fast 

minimum covariance determinant (FMCD). Next, Billor et al. (2000) proposed the 

BACON algorithm. This number of proposed algorithm shows that the appreciation 

of researchers to MCD is very positive. This reason has attracted the author to focus 

on the development.  

 

Both  FSA and  FMCD work on set consists of  h data, but  as mentioned in  Hardin 

and Rocke (2002) and Werner (2003) that MCD has  faster time process. The 

principal  difference lies on the process of  selection of  data which are going to be 

entered to h sets of data. Contrasted to  FSA which allows only single data to get in  

or to get out the set,  FMCD  allows simultaneously several data to get in and to get 

out. The difference between  FMCD and MCD is on one that  Rousseeuw and van 

Driessen (1999) called as the C- step algorithm, as we will figure out in the 

following.  

 

Just like in  MVE, suppose nXXX





,,, 21  are random samples of size n picked up 

from a p-variate distribution having location parameter    and positive definite 

covariance matrix  . The  MCD estimator for the pair ( ),   is the pair  

( ),MCD MCDT C   where,  

1
MCD ii H

T X
h 

=   

( ) ( ) t1
  MCD i MCD i MCDi H

C X T X T
h 

= − −  
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and the determinant MCDC  is minimum among all possible 
1

2

n p
h

+ + 
=  
 

 sets H. The  

C-step algorithm proposed by Rousseeuw and van Driessen (1999) is as follow form 

an arbitrary set  oldH  consists of   
1

2

n p
h

+ + 
=  
 

 data. 

1. Compute the mean vector  
oldHX  and covariance matrix 

oldHS  of all 

available data in oldH . Then, for i = 1, 2, … , n , compute 

( )2

oldH
d i  = ( )2 ,

oldold
i HH

d X X  =  ( ) ( )1
old oldold

t

i H i HH
X X S X X−− − . 

2. Sort the results of computations, from the smallest to the greatest. This order 

gives a permutation  on the observations index. Suppose the result in  order 

is ( ) ( ) ( )2 2 2
1 2

old old old
nH H H

d d d     . 

3. Form a set newH  consists of  h observations of index 1 2 3, , ,   .  

4. Compute 
newHX , 

newHS  and ( )2 ,
newnew

i HH
d X X  as on the item 2. 

5. If ( )Det 0
newHS = , repeat step  1 – 5. If  ( ) ( )Det Det

new oldH HS S= , the 

process is done. If ( ) ( )Det Det
new oldH HS S , the process is resumed until 

the k-th iteration when  ( ) ( )Det Det
new oldH HS S= .  

6. Suppose  
iHS  is the covariance matrix got from the i-th iteration.  At the end 

of the k- iteration we get   

( )1
Det HS   ( )2

Det HS    . . .  ( )1
Det

kHS
−

 = ( )Det
kHS . 

 

Suppose  MCDT  and MCDC  state the  MCD estimator for the location parameter and 

covariance matrix. Therefore, MCDT  = 
newHX  and MCDC  = 

newHS  on the k-th 
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iteration. The robust  Mahalanobis  distance between  iX  and MCDT  based on MCD, 

is written  ( ),MCD i MCDdR X T , and is defined on the quadratic form as 

( )2 ,MCD i MCDdR X T  = ( ) ( )1t

i MCD MCD i MCDX T C X T−− −   

for  i = 1, 2, … , n. Data which gives the greatest value of ( ),MCD i MCDdR X T  will 

be labeled as an outlier (labeled outlier) and is considered as a candidate of  an 

outlier. 

 

Eventhough  on the labeling process  that FMCD is much better than  MVE, but it is 

still not practical for large data of high dimension (Werner (2003)). This phenomenon 

is one that motivated the author to propose, on the next chapter, the use of more 

efficient criteria of the same effectivity.  

 

 

II.3.3 BACON 

 

 BACON is the short of  blocked adaptive computationally efficient outlier 

nominator, which was proposed by  Billor et al. (2000). BACON is a method of fast 

robust property in identifying the set of ’basic’ data considered free of an outlier. The  

BACON  algorithm for the multivariate case consists of the early stage and 

implementation stage is described as follow. 

 

1. Early Stage  

On the early stage we form a set of ’basic’ data. Billor et al.(2000) gave the following 

two choices. 

1. Compute the square of the classic Mahalanobis  ( )2d iS  = ( )2 ,id X X
S  for 

ni ,,2,1 = . Next, sort from the smallest to the greatest. This order defines a 

permutation   on the observation index. Suppose the result of the sorting is 
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( ) ( ) ( )2 2 2
1 2 nd d d    S S S . Form a set consists of cpm = observations of 

index  ( ) ( ) ( )1 , 2 , , m   . This set is one that is used as the ’basic’ set on the 

early stage.  Suppose X  is a vector of dimension p where the k-th component is 

the sample's median of the k-th variable (coordinatewise median). Compute 

( )d i = iX X−  for ni ,,2,1 = . Next sort from the smallest to the greatest. 

This order defines a permutation  on the observation index. Suppose the result 

of the sorting is ( )( ) ( )( ) ( )( )1 2 nd d d     . Form a set consists of cpm =  

observations of index ( ) ( ) ( )1 , 2 , , m   . This set is one that is used as the set 

of ’basic’ on the early stage.  

For the two choices,  Billor et al. (2000) and Werner (2003) suggested  c = 4 or 5. 

Werner (2003) says that the two choices are better, because is more effective in 

identifying many outliers. 

 

2. Implementation Stage 

1. Based on the set of ’basic’ data in the early stage, compute the sample mean  

BACONT  and the sample covariance matrix  BACONC . 

2. Compute ( )BACONd i  = ( ),
BACONC i BACONd X T  = 

( ) ( )1t

i BACON BACON i BACONX T C X T−− − , i.e. the Mahalanobis distance of  iX  to 

BACONT  based on the  BACON method. 

3. Sort the result from the smallest to the greatest. This order gives a permutation  

 on the observation index. Suppose the result of the sort is  

( ) ( ) ( )1 2BACON BACON BACON nd d d     . 

4. Form a new ’basic’ set consists of  r observations of index ( ) ( ) ( )1 , 2 , , r    

where ( )BACON rd   
2

1 ,
npr

p
n

c



 
− 

 

   and ( )1BACON rd  +  > 
2

1 ,
npr

p
n

c



 
− 

 

. The 
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constant  nprc  is a correction factor with hrnpnpr ccc +=   where  
1

2

n p
h

+ + 
=  
 

 , 

r  is the number of observations on the new ’basic’ set  

                                    
pnpn

p
cnp

31

21
1

−−
+

−

+
+= , 

        and 








+

−
=

rh

rh
c hr ,0max . 

5. Repeat the step  2 and 3 so that the number of observations in the ’basic’ set 

remains unchanged. 

6. The last data outside the ’basic’ set  is considered as a candidate of an outlier or a  

labeled outlier. 
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Chapter III    The Proposed Method 

 

 

III. 1. Motivation 

 

The identification process of anomalous data or multivariate outlier is a complicated 

process. Basically, there are two main problems to tackle. The first is, the efficiency 

of outlier labeling algorithm, and the second is the hypothesis testing (Angiulli and 

Pizzuti (2005)). Particularly, in case of high dimensional large data such as in the  

data mining or intrusion detection (ID), the algorithm efficiency is the first priority to 

handle (Werner (2003)). 

 

As it has already brought on the first two chapters, the main focus  of this dissertation 

is the development of criteria on the C-step (FMCD) algorithm. The background and 

things motivated the focus are  facts that : 

1. FMCD is having good properties. It is  robust of high  BP and gives affine 

equivariant location estimator and covariance matrix.  

2. FMCD is having weaknesses. The efficiency of the algorithm is getting lower 

when the dimension of data is going higher.   

 

On this chapter the author proposes a modification of C-step by using new criteria. In 

contrast to  C-step (FMCD) which uses minimization criteria of  determinant of  the 

covariance matrix  (covariance determinant abbreviated as  CD), the author proposes 

to modify the  C-step method by  square of covariance matrix minimization criteria. 

The latter criteria, in literatures is known as the vector variance, and is abbreviated as  

VV. CD and VV are two measures of multivariate dispersion of their advantages and 

weaknesses.  Two advantages of  VV  (Djauhari (2005b)) are: 

1. Able to measure  multivariate dispersions, although the covariance matrix is 

singular. 
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2. Its computation process is very efficient because it is only the sum of square. 

First, squaring every element of covariance matrix, and then  add them up.  

 

By taking those advantages the author modifies C-step by virtue of a criteria that the 

author calls the  minimum vector variance (MVV). Just like  MCD, MMCD, FMCD, 

and  BACON, the  MVV method is also of purpose to determine the robust estimator 

for the location parameter MVVT  and covariance matrix  MVVC  based on the set of  

1

2

n p
h

+ + 
=  
 

 data by means minimizing ( )2

MVVTrace C . Werner (2003) showed that 

MVE and MCD have the same  BP, i.e. 
2( 1)

2

n p

n

− −
. On the last section of this 

chapter the author will explain that MVV is also having the same  BP with MVE and  

MCD. 

 

 

III. 2. Vector Variances (VV) 

 

There are two famous measures of dispersions in the study of multivariate, the total 

variance (abbreviated as TV) and the determinant of covariance (covariance 

determinant abbreviated as  CD). Suppose  X  is a random vector of covariance 

matrix  . Then  TV = ( )Tr  while   CD =  . CD has a much more general use than 

TV, including its use in various robust method proposed in III.1. Therefore, if 

1 2 0p       are eigen values of    of size ( )pp , then  TV = ( )Tr  = 

p +++ 21  and CD =  = p 21 .  Concerning the role of TV and CD in 

measuring the spread of multivariate data, Pena and Rodriguez (2003) gave a very 

comprehensive discussion.  

 

The role of  TV generally can be found on the reduction problem of data dimension  

such as in the principal component analysis (Anderson (1984), Jolliffe (1986) and 
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Johnson and Wichern (1988)), analysis of discriminant (Anderson (1984) and 

Johnson and Wichern (1988)), canonic  analysis (Anderson (1984)). Meanwhile the 

role of  CD can be found in every literature of multivariate analysis. Particularly, the 

role in multivariate dispersion monitoring can be found, for example, in  Kotz and 

Johnson (1985), Alt and Smith (1988), Montgomery (2001) and Djauhari (2005a) and 

related references. 

 

Lack of TV's role is understandable, because TV  involves the variance only without 

involving the structure of covariance. Thus it is simply involving the diagonal 

elements of the covariance matrices, meanwhile  CD involves both the matrix 

structure and the covariance. This reason makes CD has a wider role in  applications 

(Djauhari (2005a)).  

 

Although CD has a wider applications than  TV, but it is not coming without  lack. 

The main lack lies on the property of having CD = 0 when there is a variable of 

variance 0 or when there is a  variable which is a linear combination of any other 

variables. In fact, that  CD = 0 is not certainly implies that X  is of degenerate 

distribution in the vector   . There is  probably  a subspace of low dimension where 

X  is of non degenerate distribution. In the context of sample, that CD = 0 shows that 

there is low dimension subspaces where data spreads around the mean vector. 

Because of this lack, the author proposes another measure of multivariate dispersion, 

which is about to show in the following paragraphs.  

 

Suppose  X  and Y  are two random vectors of arbitrary finite dimension having joint 

covariance matrix  

11 12

21 22

  
 =  

  
 



 29 

where  11  and 22  are respectively the covariance matrix of X  and Y , and  12  = 

21

t  is the covariance matrix between X  and Y . Lazraq and Cleroux (1989) define 

the measure of correlation between the two random vectors X  and Y  as follow. 

( )
( )

( ) ( )
12 21

2 2

11 22

,V

Tr
X Y

Tr Tr


 
=

 
. 

In line with this definition, the author uses ( )2

11Tr   and ( )2

22Tr   respectively as 

measures of random vector variance X  and Y  which is later called as the vector 

variance  (VV).  

 

In general, if  random vector X  has covariance matrix   , then  VV of X , ie. 

( )2Tr  , measures the spread of multivariate data around  . See  Suwanda and 

Djauhari (2003). This measure has different properties with CD, but complete each 

other. VV = 0 is exactly shows that  X  is of  degenerate distribution in    (see 

Appendix A). Another good properties of VV are: 

1. Different with  CD which requires a condition that the covariance matrix must be 

non singular, VV does not.  

2. The computation of   VV is very efficient. Different with  CD which uses 

Cholesky’s  decomposition of order ( )pO 2 ,  VV is of order ( )2pO . For p = 100, 

as an example,  CD is of order  O(1.26765E+30) meanwhile  VV is of order 

O(1.0E+4). This is an advantage which is very significant.  

 

The second property is one of the reasons of why VV is exploited in this dissertation.  
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III.3.  The  MVV Criteria and Modification of C-step 

 

III. 3. 1. The MVV Criteria 

 

Recall that  MVE and MCD  use the minimization of ellipsoid's volume criteria and 

minimization of the determinant of covariance matrix to determine the location 

estimator and covariance matrix. But, in this dissertation the author proposes to use 

the minimization of vector variance (MVV) criteria. Consider a data set 

X =  nXXX





,,, 21  of −p variate observations and let H X . Suppose  

MVVT and MVVC  are  MVV estimator for the location parameter and covariance matrix. 

This two estimators are determined based on the set H consists of  
1

2

n p
h

+ + 
=  
 

 

data which give covariance matrix MVVC  of minimum  ( )2

MVVTr C  among all possible 

sets of h data. Therefore,  

 

1
MVV ii H

T X
h 

=    

( ) ( ) t1
  MVV i MVV i MVVi H

C X T X T
h 

= − −  

 

Like  MVET  and MVEC ,  MCDT and MCDC  are,  MVVT and MVVC  are also of affine 

equivariant property and of the same  BP i.e. 
2( 1)

2

n p

n

− −
. The affine equivariant 

property of  MVV is guaranteed, because, 
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1. ( )AX + bMVVT  = ( )
1

A ii H
X b

h 
+  = 

1
A ii H

X b
h 

 
+ 

 
  

       = A MVVT b+  

2. ( )AX +MVVC b = ( ) ( ) t1
A A A A   i MVV i MVVi H

X b T b X b T b
h 

+ − − + − −  

      = ( ) ( ) t1
A A A A   i MVV i MVVi H

X T X T
h 

− −  

      = tA AMVVC  

 

Next, that  BP of the MVV estimator is the same value with BP of MVE and MCD 

estimators, i.e. 
2( 1)

2

n p

n

− −
, can be explained as follow.  

Suppose  that, 

( ) ( )1 2
t

i iX T C X T d−− − =  

is an arbitrary ellipsoid. Let 
1 2, , ... , p    be eigen values of MCDC  and *1 , *2 ,  … , 

*p  be eigen values of MVVC . Then the value of VE, CD and VV obtained based on n 

MVE, MCD and MVV respectively are, 

 

    VE  = 

1
2

p p

MVE

d
C

p



 
 + 
 

 = 

1
2

p p

MCD

d
C

p



 
 + 
 

 (see Serfling (1980)) 

 = 1 2. ...

1
2

p p

p

d

p


  

 
 + 
 

 . 

   CD  = MCDC  = 
1 2. ... p   . 

   VV  =  ( )2

MVVTr C  = 2

1  + 2

2  + … + 2

p .  
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This means that, 

 

1. VE is a multiple product of standard deviations of all principal components of 

MCDC . 

2. CD equals to multiple product of variances of all principal components of MCDC . 

3. VV is a quadratic sum of all variances of all principal components of MVVC . 

 

Taking into account the eigen values, those of MCDC  and of MVVC , it is clear that  BP 

of MVV are equal with BP of MVE and MCD, i.e. 
n h

n

−
 = 

2( 1)

2

n p

n

− −
. The eigen 

values will be finite when one of their components of at most  
2( 1)

2

n p

n

− −
 data is 

changed to infinity. The eigen values turn to   breakdown (the value becomes infinity) 

when one of its component of    
2( 1)

1
2

n p

n

− − 
+ 

 
  vector data are changed to be 

infinity. The simulation result will be given in Appendix E. 

 

Taking into account  the advantages of VV above, in the following discussion, the 

author presents a modification of the C-step algorithm. The modification is on the use 

of criteria. Contrasted to C-step (FMCD) which uses a minimization of the 

covariance matrix determinant criteria, on the modified  C-step, it is used the 

minimization of variance vector criteria.  

 

III. 3. 2. Modified C-step 

 

The MVV algorithm is a modification of the C-step algorithm, precisely it is as 

follow: 

1. Form an arbitrary set oldH  consists of  
1

2

n p
h

+ + 
=  
 

 data. 
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2. Compute mean vector  
oldHX  and covariance matrix 

oldHS  of all data in 

oldH . Next, for i = 1, 2, … , n , compute ( )2

oldH
d i  = ( )2 ,

oldold
i HH

d X X  =  

( ) ( )1
old oldold

t

i H i HH
X X S X X−− − . 

3. Sort the computations from the smallest to the largest. The order gives a 

permutation  on the index of observations. Suppose that the result of sorting 

is ( ) ( ) ( )2 2 2
1 2

old old old
nH H H

d d d     . 

4. Form a set  newH  consists of  h observations of index ( ) ( ) ( )1 , 2 , , h   .  

5. Compute 
newHX , 

newHS  and ( )2 ,
newnew

i HH
d X X  like in the point 2.  

6. If ( ) ( )2 2

new oldH H
Tr S Tr S= , the process is done. If ( ) ( )2 2

new oldH H
Tr S Tr S , 

the process is continued until the k-th iteration when  

( ) ( )2 2

new oldH H
Tr S Tr S= .  

7. Suppose that 
iHS  is the covariance matrix obtained from the k-th iteration. At 

the end of the k-th iteration we obtain  ( )
1

2
H

Tr S   ( )
2

2
H

Tr S     . . .   

( )
1

2

kH
Tr S

−
 = ( )2

kH
Tr S .  

 

The  MVV estimator for location parameters and covariance matrices respectively are 

MVVT  = 
newHX  and MVVC  = 

newHS  on the k-th iteration. The  robust Mahalanobis 

distance between  iX  and MVVT  based on MVV, is written as ( ),MVV i MVVdR X T , 

and it is defined on the quadratic form as, 

                            ( )2 ,MVV i MVVdR X T  = ( ) ( )1t

i MVV MVV i MVVX T C X T−− −   
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for  i = 1, 2, … , n. The data give large ( ),MVV i MVVdR X T  value will be labeled as 

outlier (labeled outlier) and are assumed as candidates of outliers. 

 

 

III. 4. The MVV Algorithm for the Univariate Scheme 

 

In the univariate case, simply like in the multivariate,  Iglewicz and Hoaglin (1993) 

stated the importance of outlier labeling as the first stage in identification process of  

outlier candidates. They  presented methods which are frequently used, such as Z-

scored, Boxplot, and Extreme Studentized Deviation (ESD).  ESD which was first 

introduced by Rosner(1975), is very popular for practitioners. One basic weakness of  

ESD is that the critical point is obtained from an approximation through simulations. 

This weakness was improved by Djauhari (2001) by proposing the exact distribution.  

Tietjen and Moore (1972) offered a method for the case where there is more than one 

outliers. Also Rosner (1983) who proposed the generalized ESD (GESD) method.  

 

At the end of this chapter the author introduces a method robust property and of 

maximal BP i.e. 0.5 for the univariate  outlier labeling. This is the same with  BP 

belongs to the median. The labeling method which the author proposes is a univariate 

version of  MVV. In the   univariate case, this criteria is equivalent to the 

predecessors i.e. MVE and MCD. The following is the algorithm for the outlier 

labeling of the univariate case. 

 

1. Sort the  data 1 2, , ... , nx x x  from the smallest to the largest. Suppose the sorted 

data is  
( ) ( ) ( )1 2

, , ... ,
n

x x x
  

. Once again,   is a permutation on the index set {1, 2, 

… , n}. 

2. Determine a set  H consists of 1
2

n
h

 
= + 
 

 data of minimum variance among all 

set of  h possible  data. The steps are  as follow. 
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2.1. Compute  the variance 2

1s  of 
( ) ( ) ( )1 2

, , ... ,
h

x x x
  

, the variance 2

2s  of  

( ) ( ) ( )2 3 1
, , ... ,

h
x x x
   +

, …. , and the variance 
( )
2

1n h
s

− +
 of 

( ) ( ) ( )1
, , ... ,

n h n h n
x x x
  − + −

. 

2.2. Compute the minimum of 2

1s , 2

2s , …. , 2

1hs −
. Suppose  2

ks  is the minimum. 

Then H consists of 
( ) ( ) ( )1 1

, , ... ,
k k k h

x x x
  + + −

.  

3. Suppose that  UniT  and UniC  are the mean and variance of  H. 

Compute ( )2 ,
UniC i Unid x C  = 

( )
2

i Uni

Uni

x T

C

−
; i = 1, 2, ... , n. 

4. Write ( )2 ,
Unii C i Unix d x C= ; i = 1, 2, ... , n.  

5. Repeat the step 1 – 4 until it is obtained a set H which is equal with one given in 

the previous iteration. 
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Chapter IV   Examples of Outlier Labeling 

IV. 1 Preface 

In this chapter will be discussed benefit of the MVV method in outlier labeling for 

univariate cases and multivariate cases. Several examples on univariate and 

multivariate data will be given to show performance of the MVV in separating 

candidates of outlier. 

 

IV. 2. Examples in the Univariate Case 

The following examples describe advantages of the MVV method in separating 

‘suspects’ on univariate data. Compared to the others four well known methods, i.e. 

the classic Mahalanobis method, boxplot, Z-scored, and the ESD method, apparently 

MVV gives better results. 

 

a. The classic Mahalanobis distance method 

This distance is often used to measure of how far a point from a mean sample with 

respect to a covariance matrix sample. Suppose  nXXX





,,, 21   are random sample 

of size  n having ( ),


pN  where    is of positive definite. If X


 is the vector of 

sample mean and S is sample covariance matrix , then the distance ( ),id X X
S , where 

( )2 ,id X X
S  = ( ) ( )1

t

i iX X X X−− −S , is called the Mahalanobis distance of  iX


 to 

X


.  A point will be declared as labeled outlier if ( )2 ,id X X
S  > C, where 

( )
( )
1

1, 1

1
n

n
C F

n

−

−

−
= . 
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b. The boxplot method 

This method is the popular graphical method to identify labeled outlier. Tukey (1977) 

proposed  boxplot to separate  the outlier candidates. Observations beyond the fences 

are labeled as outlier. The fences are determined by the upper bound – outlier (UBO) 

= Q1 + 1.5(Q3 – Q1) and the lower bound-outlier (LBO) =  Q1 – 1.5(Q3 – Q1). Here, 

Q1 and Q3 are the first and the third quartile. 

 

c. The Z-scored method 

Iglewicz and Hoaglin (1993) proposed a modified Z -scored. The observations will be 

outlier candidates when iM D , where
( )0.6745

MAD

i

i

X X
M

−
=    and  

MAD =  1, 2, ... ,iMedian X X i n− = . Based on the simulation study, 

they suggest  D = 3.5. 

 

d. The ESD method with exact distribution 

Djauhari (2001) improved the extreme studentized deviate (ESD) method proposed 

by Rosner (1975) by deriving the exact distribution. The critical point is 

( )
( )

( )
2

11 2
0.95 ; ;

2 2

n np
C Beta

n

−− − 
=  

 
 . 

 

e. The MVV method 

Author proposes the method to separate suspects on univariate data(see section III.4). 

The observations are labeled outlier if ( )2 ,
UniC i Unid x C > CR. Hadi (1992) proposed 

2

975.0,1

hc
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npr
=  and 
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
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



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hn
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Example 1.  

 

The following ordered data is about the strength of gears taken from  Iglewicz and 

Hoaglin (1993 p.19).  

 

1958, 2185, 2210, 2250, 2251, 2263, 2275, 2311, 2329, 2353, 2431 

 

The data spread is shown on the dotplot on Figure  IV.1. 

 

 
Figure IV.1. Data dotplot of gears strength 

 

The figure indicates that the 11-th and the 1-st data are suspected as candidates of 

anomalies data. How the status of both data really are?  The Figure IV.2 illustrates 

the result. The classic Mahalanobis distance, Z-scored and ESD only label the11-th 

data as labeled outlier. Because of masking effect, the 1-st data can not be identified 

as an labeled outlier.  On other hand, boxplot and MVV apparently give the same 

result to the characteristic of data spread. They can detect that the 11-th and the 1-st 

data are candidates of outliers 
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GAMBAR 1AA (39) 
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Example 2. 

 

The following are data of  cholesterol level of a group of healthy people, courtesy of  

Bolton, taken from  Djauhari (2001). Ordered data of  15 normal people is,  

 

165, 194, 197, 200, 202, 205, 210, 214, 215, 227, 231, 239, 249, 297 

 

The data spread is shown in   dotplot on the following figure. 

 

 

 
Figure IV.3. The dotplot of  serum cholesterol data  

 

 

Bolton, as cited by Djauhari (2001), stressed that  “without the presence of an obvious 

error, one would probably be remiss if these two values (165 and 297) were omitted 

from a report of normal cholesterol values in these normal subjects”. Next he added 

that “with the knowledge that plasma cholesterol levels are approximately normally 

distributed, a statistical test can be applied to determine whether the extreme values 

(165 and 297) should be rejected”.  

 

As in Example 1, the five methods will be used to identify the suspects. Figures IV.4 

shows the result from five approaches. 
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GAMBAR 1BB (41) 
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Example 3.  

 

It will be shown the advantages of the robust method in labeling outliers on data 

resulted from simulation. The numbers of 50 data are generated randomly from 

mixed normal univariate model where the 40 data are of standard normal distribution   

( )0,1N and the remaining 10 date are of ( )5,1N  distribution. The generating 

processes are done 50 times. The data spread is shown on the following dotplot. 

 

 

 
Figure IV.5. The dotplot of 50 univariate data from simulation 

 

 

 

 

As it is shown on Figure IV.6., the Mahalanobis distance approach is unable to give 

correct outlier label. A masking effect has appeared. The masking effect is also found 

in the boxplot, the ESD and the Z-scored method. To avoid the masking and 

swamping effect, it was proposed the MVV method, a method of robust property. 

Based on the proposed method, all outliers can be labeled correctly (see Figure IV.6e) 
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GAMBAR  1CC (43) 
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IV. 3. Examples in the Multivariate case  

 

This section will discuss performance of MVV and performance of the famous robust 

methods, MVE and FMCD. Compared to MVE and FMCD, MVV gives faster time. 

Furthermore, MVV gives better result than MVE, and MVV has the same effectivity 

from FMCD. Advantages of the MVV method on the outlier labeling process are 

given on the following examples. 

 

Example 1.  

 

This example uses data of  physical dimension of Iris Virginica a kind of spider lily 

flower; taken from Mardia et al. (1979, p. 5-7).   

 

Figures IV.7 illustrates the outlier labeling from data of Iris Virginica. Based on the 

approach of  classic Mahalanobis distance it is apparent that there is no data can be 

identified as outlier candidates. The same result is also found on the robust 

approaches (MVE, FMCD and MVV). Even though analysis carried out by Rolfh 

(1975) gave 4 outliers, they are data  no. 7, 20, 10, 15, and Wilks (1963)  found  data 

no. 19, 35, 7, 32 as  outliers, it is clear that there is no data labeled as outlier.  

 

 

Example 2. 

 

This example uses data borrowed from Hawkins, Bradu and Kass (1984, p. 205, 

Table 4). The sample size is n = 75 and number of variables involved is p = 3, they 

are  X1, X2, and X3.  
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Figure IV.8 illustrates the outlier labeling from data of HBK. Based on the classic 

Mahalanobis distance, it is apparent that there is no data can be identified as suspect. 

In the other hand MVE and FMCD give similar patterns. Candidates of outliers form 

a significantly separate group from clean data. From observations on unclean data, it 

is known that there are 14 observations labelled as outliers. The MVV method gives 

result of similar quality to the previous two methods FMCD and MVE. From the 

labeling result using MVV, it is apparent that the clean data and the unclean data are 

separated very clearly.  

 

Example 3.  

 

The numbers of 300  data are generated from the multivariate normal  mixture model 

of low dimension, i.e. p =15. The model is ( ) ( )15 1 151 , IN −  + ( )15 2 15, IN  , with  

050.= , 01


= , 2 4 e = , and  e  is a vector of dimension  15 and all of its 

components are having value 1. From the model, there are 15 contaminant data out of 

300 data as a result of small shift of the mean vector. Three robust methods, i.e. 

MVE, FMCD and MVV are used to identify suspects.  The projection approach, 

which is proposed by Pena and Prieto (2001), is also done in this example.  

Figure IV.9 gives a visualization of outlier labeling based on Pena and Prieto’s 

method.  

 

Figure IV.9. Outlier labeling by the method of  Pena and Prieto of data resulted from 

simulation for p=15 
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In the Figure IV.9, it is seen that there are 17 data assumed as outliers and are 

grouped into the unclean group or contaminants. This number is more than it is 

supposed to, i.e. 15. This shows that the projection method of labeling above allows 

masking effects, which have produced another data to the group of contaminants 

 

The outlier labeling from this case can be seen in Figure IV.10. The figure shows the 

classics and the robust distance approach. The pattern of classic Mahalanobis distance 

does not show any difference between the group of clean data and the contaminant. 

This is not surprising because the classic Mahalanobis distance is not robust. The 

MVE and FMCD give a better result than the classical approach. We see that the two 

approaches,  MVE and FMCD are able to separate the group of clean data and the 

contaminants well. MVE and FMCD are able to label fairly the outliers.  

 

Besides of advantage on the labeling aspect, FMCD also has an advantage on the 

aspect of time. A comparison of time processing the 300 data by using FMCD, MVE 

and  Pena and  Prieto’s method is given on  Table IV.1. 

 

Table IV.1  Comparison of time processing 

 

Method Time (seconds) 

FMCD 32.5 

MVE 673.9 

Pena and Prieto’s method 715.6 
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Even though FMCD gives the shortest time among the three methods, but for large  p, 

for example hundreds, FMCD also requires long time. This is because the 

computation of determinant of covariance matrix of size p p . Through the 

Cholesky’s  decomposition method, required time to compute the determinant is of 

order ( )2 pO . Relating with the aspect of processing time, MVV shows an advantage 

with time complexity of order ( )2O p  for VV computation. The following Table IV.2 

shows differences on  processing time of the determinant of covariance matrix MVVC  

of order  ( )2 pO and the computation of  ( )2

MVVTr C  of order ( )2O p .  

 

Table IV.2 Comparison of computation time of VV and CD for p =15 

 

Method Time (seconds) 

VV 1.10E-04 

CD 1.31E-04 

 

From Figure IV.10 also seen that the effectivity of  MVV is equal with MVE and 

FMCD. Further more, as it is seen on  Table IV.2, from the aspect of time MVV is 

much more efficient than FMCD. 

 

Example 4 

 

The numbers of 1500 random data are generated from a mixture model of high 

dimension, i.e. 100. The model is   ( ) ( )1001100 ,1 IN 


−  + ( ) ( )1002100 , IN 


, with 

050.= , 01


= , 2 10 e = , and  e  is a vector of dimension  100 where all of its 

components are 1.Thus, there are 75 contaminants data out of the 1500 data.  
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Next it will be found out the performance of  FMCD and MVV on separating the  75 

contaminants data from the group of clean data.  

 

Figure IV.11 illustrates the effectivity of MVV and FMCD from this case, it shows 

that in labeling MVV has the same effectivity with FMCD. The computation time 

( )2

MVVTr C  is much faster than the computation time
MVVC . Table IV.3 presents a 

comparison of time between the two computations. Figure IV.11 and Table IV.3 

strengthen reasons of usage of MVV on labeling outlier of robust property.   
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Figure IV. 11  The scatter plot based on  (a) MVV  Mahalanobis distance,  

(b) FMCD Mahalanobis distance  

 

 

Table IV.3  The time comparison between  VV and CD 

 

Method Time (seconds) 

VV 5.03E-04 

CD 4.76E-02 
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Chapter V   Conclusions and Direction of Further  Research 

V.1. Conclusions 

1. On the aspect of effectivity on labeling of outlier data, the examples in Chapter 

IV highly indicate that  MVV is having the same effectivity with FMCD. This is a 

nice property of MVV which turns out to be  a consideration for using it. 

2. On the aspect of algorithm efficiency, MVV is much better than FMCD. 

Complexity on the computation of covariance matrix determinant  (CD) by using 

the Cholesky’s method is of order  ( )pO 2 , meanwhile the  trace computation 

merely needs ( )Det S . 

3. Through a simulation study using  Matlab 6.15, the illustration of comparison 

between required time in the computation of  VV, ( )2Tr S , and CD, ( )Det S  for 

various size of positive definite symmetric matricex S of size p p is presented 

on  Table V.1. 

 

Table V.1 Comparison between time of computation  of CD and VV 

p CD:VV 

10 

25 

50 

75 

100 

150 

200 

250 

300 

6:1 

13:1 

34:1 

67:1 

95:1 

127:1 

231:1 

326:1 

443:1 

 

4. Table V.1 shows clearly the advantages on the aspect of time given by MVV. 
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V.2. Direction of Further Research 

 

The most fundamental problem which provide  the basis of all robust methods such as 

MVE, MCD, MMCD, FSA, FMCD, and BACON is the definition of multivariate 

dispersion measure. Different with  MVE which uses the least volume of ellipsoid 

that covers the whole data as the dispersion measure and BACON uses the corrected 

quantile of  chi-squared distribution, the others use the determinant of covariance 

matrix. MVV that the author proposes is based on VV as the measure of multivariate 

dispersion. As measures of dispersion, VE, CD and VV,  come with their own 

weakness. Two different structures of covariance could have the same measure.  

 

Another fundamental problem is  investigation on the distribution of 

( ),MVV i MVVdR X T . The (1 – )-th quantile of the distribution is required to test the 

hypothesis, whether labeled  outliers are really  outliers. 

 

Those are fundamental problems on the multivariate outlier identification that author 

stresses as further directions of research. Specifically, the directions are  (1) how to 

build a measure of dispersion that has a better performance in explaining the situation 

of spreading of multivariate data,  and (2) what is the distribution of 

( ),MVV i MVVdR X T .  
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