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Performance of Robust Two-dimensional Principal
Component for Classification
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Abstract — The robust dimension reduction for
classification of two dimensional data is discussed in this
paper. The classification process is done with reference
of original data. The classifying of class membership is
not easy when more than one variable are loaded with
the same information, and they can be written as a near
linear combination of other variables. The standard
approach to overcome this problem is dimension
reduction. One of the most common forms of
dimensionality reduction is the principal component
analysis (PCA). The two-dimensional principal
component (2DPCA) is often called a variant of principal
component. The image matrices were directly treated as
2D matrices; the covariance matrix of image can be
constructed directly using the original image matrices.
The presence of outliers in the data has been proved to
pose a serious problem in dimension reduction. The first
component consisting of the greatest variation is often
pushed toward the anomalous observations. The robust
minimizing vector variance (MVV) combined with two
dimensional projection approach is used for solving the
problem. The computation experiment shows the robust
method has the good performances for matrix data
classification.

Keywords: 2DPCA, PCA, outlier, robust, sensitivity, vector
variance, wishart distribution

I. INTRODUCTION

LASSIFICATION is one technique of data

mining to predict an object to a certain class
based on information in one or more characteristics of
data. As with most data mining solutions, a
classification usually comes with a degree of certainty.
It might be the probability of the object belonging to
the class or it might be some other measure of how
closely the object resembles other examples from that
class. This paper discusses the new measure of
classification by combining of two advantages from
two approaches; the two-dimensional (2D) projection
approach and the robust approach.

The principal components analysis (PCA) is
primarily a data analytic technique describing the
variance covariance structure through a linear
transformation of the original variables, Jollife [4].
The technique is the most popular among the
dimension reduction analysis which is used to
transform the original set of variables into a smaller
set of linear combinations that accounts for most of
the original set variance. The first principal

component is the combination of variables that
explains the greatest amount of variation. One
disadvantage of PCA is the high computation.

Yang et. al [6] proposed the two-dimensional
Principal Component (2DPCA) for reducing
computational time of standard PCA. The 2DPCA is
often called as a variant of principal component
(PCA). In the 2DPCA, the image matrices were
directly treated as 2D matrices; the images do not
need to be transformed into a vector so that the
covariance matrix of image can be constructed
directly using the original image matrices. Compared
with PCA, 2DPCA is more efficient.

The decomposed information variation of classical
PCA and 2DPCA becomes pointless if outliers are
present in the data. The decomposed -classical
covariance matrix is very sensitive to outlying
observations. The first component consisting of the
greatest variation is often pushed toward the
anomalous observations. Anscombe [2] categorized
outliers into two majors: those arising from errors in
the data and those arising from the inherent variability
of the data. The several causes of data errors are the
experimental error, human error, and instrument error.
An outlier is often difficult to be identified through
visual inspection without the analytic tools. The
difficulty becomes harder when data size is in larger
dimension.

The classical estimates such as the sample mean
and covariance are very sensitive to outlier, even by a
single outlier. One or more outliers can significantly
shift the mean and increase the dispersion of variance.
The presence of outliers can lead to inflated error rates
and substantial distortions of parameter. Robust
approach is one method believed to be able to detect
outliers well. In this paper, author introduces the
robust 2DPCA for handling outlier in the process of
2D projection.

The robust method deals with a very real problem
in statistical applications, the robust estimator provide
a good solution when the data contain outliers. The
word ‘robust’ is loaded with many—sometimes
inconsistent—connotations. Major goal of robust
statistics is to develop methods that are robust against
the possibility that one or several unannounced
outliers may occur anywhere in the data, Hampel [3].
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There are some robust criteria proposed to get an
effective estimator. The most well known criterion is
to minimize the volume of ellipsoid of a parallelotop.
The minimum covariance determinant (MCD) is a
robust high break down point method using minimum
volume ellipsoid, Rousseuw [8]. MCD has an
important role in the application of data mining, but
the one lack property of MCD is the determinant of
covariance matrix equal zero is not certainly implies

that a random vector X is of degenerate distribution
in the mean vector zz. MCD approach requires a

condition that the covariance matrix must be non
singular. Herwindiati et. al [1] proposed robust
minimum vector variance to overcome the difficulties
of MCD.

The minimum vector variance (MVV) is a robust
method that uses the minimum of a square of length of
a parallelotope diagonal to estimate the location and
scatter. MVV is robust high breakdown point
generated from vector variance (VV) as multivariate
dispersion [1]. The objective of paper is to propose the
robust minimizing vector variance in 2D projection
process for classification of mxp arbitrary matrix

data. The aspect of theoretical distribution for
sensitivity is also discussed to see the robustness of
measure.

II. CLASSIFICATION OF MATRIX DATA USING THE
CLASSICAL 2DPCA

Two dimensional Principal Component (2DPCA)
was proposed by Yang et.al [6]. The method using the
projection technique is developed for the gray scale
face recognition. Though the 2DPCA is often called as
a variant of principal component (PCA), the 2DPCA
has two important benefits over PCA: it is easier to
evaluate the covariance matrix and it uses less time for
determining the eigenvectors. In the 2DPCA, the
image matrices were directly treated as 2D matrices;
the images do not need to be transformed into a vector
so that the covariance matrix of image can be
constructed directly using the original image matrices.

Consider X, X,, - is a mx p random image

matrix, let ¥ is an p-dimensional unitary column

vector, the idea of 2DPCA is to project X onto V by
linear transformation
Y=XV (1)

Define the image covariance matrix

S,, =E[(X-EX)T(X-EX)] which is a pxp non

negative definite matrix. The covariance matrix of
projected feature of sample is defined as

Sy =V'E|(X-EX) (X-EX) |/ =V"8, V.

Suppose there are N image matrices {Xi},

i=1,2,--- and denote the average image as
_ N
X=%ZX, ,then S,, can be evaluated by
i=1
1 & S\ S
Sy = WZ(X:‘ _X) (Xi _X) 2
i=1

To have the optimal projection direction of 2DPCA,

S, has the important rule, the 17”,), is the eigenvector
of S, corresponding to the largest eigenvalue. A set

orthonormal projection directions 171, 172, d are the

orthonormal eigenvector of S, corresponding to the

d largest eigenvalues, i.e. 17(71,,:“7'1,172,.-- “_J,

—

Projecting a matrix X onto Vop[ is

Y, =XV,, k=12, ?3)

The descriptions of formula (1) until formula (3)
give us the comprehension that the 2DPCA takes to
less time than PCA for classification, because the size
of S, isonly pxp.

Principal component analysis (PCA) is well
established dimension reduction technique. To differ
from 2DPCA, all of the 2D data must be previously
transformed into 1D vector before the data will be
processed by PCA approach. The transformation leads
to a high dimensional vector space. Consider
X Xyseee is a mx p random image matrix, the

N image matrices were transformed into 1D vector
Ixmp . The dimensional of PCA covariance matrix

S. is mp by mp. The large size covariance matrix

S. makes the computation becomes time consuming.

III. CLASSIFICATION OF MATRIX DATA USING THE
ROBUST 2DPCA

In this section author will discuss the robust
2DPCA using the measure minimizing vector variance
(MVV). The robust 2DPCA is primarily a robust
approach describing the variance covariance structure
through a linear transformation of the original
variables. The technique is a useful device for
representing a set of variables by a much smaller set
of composite variables that account for much of the
variance among the set of original variables. The data
reduction based on the classical approach becomes
unreliable if outliers are present in the data. The
decomposed classical covariance matrix is very
sensitive to outlying observations. The first
component consisting of the greatest variation is often
pushed toward the anomalous observations.

Minimum Vector Variance (MVV) is method by
using the minimization of vector variance (VV)
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criteria to identify the outliers. The estimator MVV
for the pair (,&,L) is the pair (TMW, CMV,,) giving
minimum vector variance. The MVV estimator can
be computed by the following description, given
random samples X,, X,, -+ of dimension n
taken from a p-variate distribution of location

parameter 4 and a positive definite covariance
and C are MVV

MVV
estimators for location parameters and covariance
matrix. Both estimators are defined based on a set

n+p+1}

matrix X. Suppose T,

H c X consist of A =|: data points which

! . . . 2
gives covariance matrix C,,,, of minimum Tr(CMW)

among all possible 4 data, see Herwindiati et.al [1].
Then,

1 ~
Ty =;ZieHXi 4)

1 = = q
Coy = ; Z[GH(X.' P IA/VVMX,' - IMVV) Q)

The algorithm of MVV robust 2DPCA has no
significant difference with MVV robust PCA except
for the criterion projection. The proposed method is
not focused on face detection, the paper is purposed to
classify a general problem on a matrix data. The
algorithm of the MVV robust 2DPCA has three
stages. Suppose X, X,,-- is a mxp random

image matrix.

Stage 1 Start with a construction the covariance
matrix by using the N original two
dimensional (2D) matrices. Find the
orthonormal eigenvectors corresponding to
the d  largest eigenvalues S,
170,,/ =L’7|, A K Projecting a matrix X
onto 170!,, is )7A =Xl7k, k=12,---

Stage 2  Estimate the location and covariance matrix

of projected matrix X, , using MVV

mx

robust approach.
1. Let H, be an arbitrary subset containing

h=[”+k+1
2

} matrix data points. Compute

the average matrix as X u, and covariance
matrix S, ~ of all observations belonging to
H,,. Then calculate Bmx,‘.=(X—)_(HOM),
k=12,

2. Compute dy, (i)=D'S; D, foralli=1,2

... , N where Dlxd is defined as mean of m
rows in each k column £ =1,2,---

3. Sort these distances in increasing order

4. Define H,,, = {X &

(1)

2)°" " -

rrrrrr

stopped.
Otherwise, the process is continued until the -
th iteration if

Tr(S})2Tr(8)) 2 Tr(S}) 2 1)=Tr(S2,
Thus, we get
Tr(S})=Tr(S}) 2 Tr(S3) 2+ | 7)=Tr(S,

Stage 3 Classify the matrix data based on robust
MVYV distance

iy (1) = Dy Sy, Dygyy > foralli=1,2, N (6)

IV. COMPARISON RESULT OF CLASSIC 2DPCA AND
RoOBUST 2DPCA

To compare the classification process of classics
and MVV robust 2DPCA, we do several experiments.

A. The Classification of Two Objects

Starting with the classification of two object types,
there are (30x30) pixels of 50 grass images and 25

ocean images.

Fig. 1. Two Objects for Classification: Grass and Ocean.

The extraction of object features based on RGB
color spaces are to be used as elements in the
classification. The classical classification of 2DPCA is
unable to hold the two significant variations of grass
and ocean; consequently, the objects are not separated
well (see Figure 2A). The classic 2DPCA is not robust
to outlier. The occurrence of one or more outliers can

shift a data center X to keep away from a location of
main data, so that the masking effect is not avoidable.
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The outcomes of experiment tell us that the robust
MVV 2DPCA is a powerful approach for
classification, even when new objects are added in the
dataset.

V. THE SENSITIVITY OF CLASSICAL AND ROBUST
METHOD TO OUTLIER

The good performance of robust methods is
exhibited in Section IV. The main problem of classical
method is that the location estimator shifts closer to
outliers. The occurrence of one or more outliers shifts
the mean vector toward outliers and the covariance
matrix becomes inflated.

Outlier can be considered as an influential
observation. An observation is called influential if its
deletion would cause major changes in estimates. The
influential observation can significantly change an
estimator.

The estimator is said to be insensitive if there is no
significant change due to removal of outlier. There
are many ways to measure the sensitivity; this paper
brings simple discussion, both on computation and the
theoretical distribution.

Theorem:

Suppose XI,XZ,W *' are random sample of size

n of a probability distribution having mean del
where p=>2 is an integer and the covariance matrix

2 is of positive definite. Then the random vector

¥ =ynC™ (5( g~ n,(0.1,) )
where )?n =>X,,CC'=L.
=
Consider data set X, = {)?1, X,, - ., of p-
variate, the scatter matrix of sample A is
A=i()?j—XMXj—X} (8)

J=1

X T X is the sample’s mean vector.
j=1

where

From equation (5), the scatter matrix A is of
Wishart distribution with parameter X and the degree

of freedom n—1, written as A~Wp():,n—1), A is

independent of X.

Define A, the scatter matrix removing the i
observation, say the i observation is an outlying

observation. The scatter matrix A_; is formulated as

n

A=

i#j=1

3 ¥,

The scatter matrix A4_; is of Wishart distribution
with parameter X and the degree of freedom n-2,
A; ~ Wp (E,n —2) . Based on two formulas, the ratio

()?j —X_,)(X,.—X_,-) ©)

where X =

of scatter matrix as the consequence of removal the i
observation is given by

4l
A [, (10)
=)

and R. can be shown of distribution

1

beta(n—Tp_l,gj. The ratio R, is close to 1 means

that no significant change due to the removal of that
observation.

In this case, the estimator is said to be insensitive to

an outlier when R, > beta(%w,g) .

In application on data mining, it is often found
problems of more than one outlier, so the masking
effect is unavoidable. This section discussed the
sensitivity of estimator when there is & outliers (k> 1).

Suppose the group consists of & outliers, the scatter
matrix A4_,, as a consequence of the removal of I™

group, is of distribution A, ~W,(Z,m). Matrix A
can be decomposed as A=A4_,+B and B = )?k)?; .
The distribution of B is W, (X.k).

Similar with the case of single outlier, the ratio of
scatter matrix as a consequence of removal of the
observation on the group I can be formulated as
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] 4]
" |4 |4, +B]

an

Mardia et al [7] stated that R, has Wilk’s Lambda

distribution ~ with ~ parameter  p,m,k, and
m= n—(k +1) or R, ~ A(p,m,k) . The Wilk’s
Lambda distribution can be approximated by
h
A(p,m,k) ~ Hui
i=1
12)

u, ~ beta m_—pﬂ,ﬁj,
2 2

i=1,2,..,k

R, close to 1 means that there is no significant

change due to the removal of k observations on the
group I. The estimator is said to be insensitive to k
outliers when

(13)

The distribution of classical approach is well known
and it is different with the robust approach. The
distribution of robust is not easy to be composed.
Usually we have to do the simulation approach to get
the distribution. In the section will be discussed the
sensitivity and the approximated distribution of robust
approach.

Let dataset X, = {)?I, X,, - of p-

©)
variate observations. If observations taken from it a

subset H — X consist of % data points, then
X, X,, - d_ are random sample of size 4 and of

. - +p+1
distribution N, (p,;. ), h assumed as h = [%] :

The location and scale estimator can be computed as,
Xt=2%X (14)

h ich
s* =Z(X,. —XMX,. X
ieh

Based on limit central theory, if

X, X, 0

; Xy . ) then the distribution of
S* can be approximated by m c™S%~ W(m, Z) [6].
It means that

R

R _ TR ——— .
A _;(X, X )kX" X) ¢ — (15)
and A® ~ %nW(m, =) (16)

The ¢ can be approximated by 1. Hardin and Rocke
[5] predicted the values of m by simulation approach

The predictions are listed in the Table .
TABLEI
THE PREDICTION OF M

Dimension and Size Mpred
p=5, n=30 12.89
p=10, n=100 33.13
p=10, n=500 126.71
p=20, n=1000 298.35
[47]
Based on the formulas, R® = 1—_ approximated b
, I 1 Rl pp y
R mp
Ri R Ty m, m-p+1 (17)
m (m -p+ 1)

The estimator is said to be insensitive to k outliers on

h
the group I when R, > Hui :

i=l
The section illustrates the sensitivity of classical
and robust measure k£ >1 outliers. For illustration, let
the multivariate data having size n=50; p=5. Data

contain k£ = 3 outliers which are far from a bulk of
data. The sensitivities are measured by ratio of scatter

|47]
471

approaches is computed by simulation as shown in
Table II.

matrix le = . The ratio of classical and robust

TABLE II
RATIO R, BY REMOVING K=3 OUTLIERS
Method
Value .
Classical Method Robust Method
A 27.1628 0.040128

A, 0.807614 0.039319

R, 0.029732 0.979824
Cut off 0.999722 0.096965

Sensmyny to Very sensitive* Insensitive

outliers

The removing outliers causes a serious problem on
the classical estimator. The value of estimator is very
sensitive to outliers. It can be seen in the table 2, the
estimator becomes to be inflated when the outliers
‘present’ on the data set.

The reverse of classical sensitivity, the ratio of
MVYV robust estimator is almost 1, though & = 3
outliers are removed.

VI. REMARK
The MVYV robust estimator is not sensitive from
‘presenting’ or removing outlier. On the classification
processes, the MVV robust 2DPCA is an effective
method. The outcomes of all experiments show the
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MVV 2DPCA is powerful approach to classify the
several objects.
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