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Abstract—Outlier labeling can be considered as an early procedure
to get the information of ‘suspects’. This paper introducesrobust
kurtosis projection algorithm for multivariate outlier labeling of
data set with moderate, high and very high percentage outlier. The
algorithm works in two stages. In the first stage, we propose a
projection approach to findthe orthonormal set of all vectors that
maximize the kurtosis of the projected standardized data. In the
second stage, we estimate robust covariance matrix minimizing
vector variance to label high dimensional outliers. In this stage, we
use the robust estimator on the lower-dimensional data space to
identify the suspected anomolous observations. The simulation
experiments reveal that theintroduced algorithm has a good
performance to identify an anomalous observation hidden in a
moderate, high, and very high percentage of contamination data
and it seems to work well in data analysis.
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L

utlier detectionis one of the basic problems of data mining.

Outlier detection has the important role in modeling,
statistical inference, and even data processing because outlier
can lead to model misspecification, biased parameter estimation
and poor forecasting. Outlier detection has also extensive use in
wide variety of computer science applications, such as intrusion
detection, image detection, content-based image retrieval, and
classification of remote sensing data.

Awareness on outlier occurrence had emerged since early
XVI century. It was when Francis Bacon on 1620 wrote about
the importance to know phenomenon of nature deviations, cited
by Werner [10].Studies on outlier detection have been
developed for centuries. Thompson [16] proposed statistics test
for univariate data in form of ratio between deviation of every
obscrvation to the mean and standard deviation of sample. Wilks
[14] introduced a method of outlier testing for multivariate data
based on the ratio of volume of aparallelotop. Rousseeuw [12]
introduced the minimum volume ellipsoid(MVE) to estimate
location parameters and covariance matrices as measure of
outlierdetection. Rousseeuw and van Driessen [13] introduced
the fast minimum covariance determinant(FMCD) for the same
future goal. A criterion for robust estimation of location and
covariance matrix for outlier labeling based on minimum vector
variance (MVV) was also proposed byHerwindiati etal.

INTRODUCTION

[2].Various techniques on identification of outliers were
proposed, one of them is outlier labeling.

The outlier labeling can be considered as the early procedure
to get the information of “suspects”. The aim of outlier labeling
is to flag observations as possible outliers for further
investigation, Iglewiczand Hoglin [1]. The preliminary
information on the number and location of outlier is able to help
in formally identifying the potential outliers.

Authors have proposed many definitions for an outlier with
seemingly no universally accepted definition. This paper uses
the famous definition given by Barnet and Lewis [15] that
outlier to be one or more observations, which are not consistent
among others.

Numerous outlier detection techniques have been proposed in
the data analysis. Our paper presents a new technique to label
outlier. The procedure combines two advantages of both
kurtosis projection pursuit and robust covariance estimation.
The goal of projection pursuit is to use the data to find low (one,
two, or three) dimensional space providing the most revealing
views of the full dimensional data. Robust statistics deals with
deviations from the assumptions of normality, linearity, and
independence stick on the classic estimation methods frequently
are not satisfied, see Huber[11]. Robust statistics is a convenient
modern way of summarizing results when we suspect that they
include small proportion of outliers.

The interesting properties of kurtosis projection pursuit and
the powerful of robust estimation tend us to introduce the new
measure for multivariate outlier labeling of dataset with
moderate, high, and very high percentage outlier.

Our algorithm works in two stages. In the first stage, we
propose the projection approach finding the orthonormal set of
all vectors that maximize the kurtosis of the projected
standardized data. This approach improves on the slow
convergence rate proposed byPena and Prieto[3]. In the second
stage, we estimate robust covariance matrix minimizing vector
variance (MVV) to label high dimensional outliers. In this stage
we use the MVV estimator on the lower-dimensional data space
from kurtosis projection to indentify the suspect anomalous
observations.
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II. THE ALGORITHM OF KURTOSIS PROJECTION APPROACH

Projection pursuit; Friedman [5]; is a technique aiming at
identifying low-dimensional projections of data that reveal
interesting structures. The framework of projection pursuit is
formulated as an optimization problem with the goal of finding
projection axes that minimize or maximize a measure of interest
called projection index.

Kurtosis can be formally defined as the standardized fourth
population moment about the mean,

EX —p)* u* i
SEX=2 o o
whereE is the expectation,u*is the fourth moment about the
mean, and ois standard deviation. The role of kurtosis is a
measure of normality; in issues of robustness, outliers, and
bimodality.

LetX = (X,%,,
observation result ofp variables ton individual objects andda
unit vector inR?. The orthogonal projection of each observation

,%,.)'be a data matrix of sizen X p as the

result on to one-dimensional space spanned by dis Vi = &'56}.
Write the projected data as Y = (1, ¥5, -+, ¥n). The kurtosis
of the projected data is formulated as

1
P ;ZiENn(yi - t)4 (2)
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wheret = %ZieNn y;and s? = %ZiENn(yi — t)?%are the sample
mean and the sample variance of the dataY respectively. It is
noted that s* is the square of s? and N,is the set of all natural
numbers less than or equal ton.

Centering and scaling transformation Y gives a new dataZ =

(21, 23, , Zp), where for alli € N,

i—t o o
z; = X‘S— Since the sample mean ofZisO and the sample

variance ofZis1, the kurtosis ofZis formulated as:

K=o ©
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Define the sample mean? and the covariance matrixS of the

data matrixX as:
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then the kurtosisK can be written as
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Consider the objective functionfdefined as
- 1 SN 2,3
F(d)== > (@5)" -(dd-1) @
{eNy,

whereA is the Lagrange multiplier. The first derivative offand
setting it to be zero results:
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erte;asxl. We see thatx,is the eigenvalue of
1 22122 o . . .
;ZieNn(d’yi) y:¥;'anddis the corresponding eigenvector.

Multiplying the last equation by(i'from the left results
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So the unit vectordthat maximizesKis the eigenvector of

1 Jr= S
M, =£Z(d’yi) YiYi

iEN,,
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corresponding to the maximum eigenvalue of that matrix. We
will call such eigenvector byd;. In order to obtain the second

unit vectord that maximizesK and orthogonal toczl, we have to
maximize the objective functionf'that is redefined as

3 1 - 2, = 5 3
f(d)=;Z(d’yz) — A (d'd—1) - Nd'd,

iENp

(12)

whereA,andZ; are the Lagrange multipliers. The first derivative
off and setting it to be zero results,

df—lz4(&'*)3* 24,d — Ad; = 0

dd n Yi) Yi 1 281 = (13)
i€ENp
1 N3, As s
gZ(dyz) Ji-di=-d (14)
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Where};—l is the kurtosisK. Write % as K,. Now, multiplying byc?i
from the left results
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The second unit vectord that maximizesK and orthogonal
tod, is the eigenvector of

2 a1 -
My =(1-dd)> ) (d5) 53¢

ieNp

(20)

corresponding to the maximum eigenvalue of that matrix. We
will call such eigenvector by&z. We can verify that for 2 < k <
P, d «1s the eigenvector of the matrix

k-1
My = l—z j Z(d yl) yzyz 21
Jj=1 lGNn

corresponding to the maximum eigenvalue of that matrix.

The outlier labeling can be considered as the early procedure
to get the information of the “suspects”. This paper use
projection of maximize kurtosis coefficient to separate
suspected data. Our proposed algorithm is inspired by Pena and
Prieto’s work [3]. Pena Prieto proposed the projection of data
on p-orthogonal axis maximizing kurtosis. Their projection
pursuit is not easy for large dataset and the computational
difficulties are formidable.

We introduce the kurtosis projection approach for the initial
step of our proposed method that is ‘Robust Kurtosis Projection’
to label outliers on multivariate data case. The projection
algorithm is written as,

Algorithm 2.1: Finding p unit vector that maximizes

the kurtosis

Input: matrix dataX = (¥;,X,, -

Process:

1.Compute the sample meant and
covariance matrix S of X.

,X,)" of sizen X p

the sample

5 ik P
t=-— Z X
n
ieNy,
1 . ol
S=ZZ(x,-—t)(xl—t)
iENy,

2. Standardize the matrix dataXsuch that the projected
data has mean 0 and variance 1.

yi= S_%(fi - 1)

3.Find the first unit vectord; as the eigenvector of
1 2 a\20 o . :
;ermn(d')’i) ¥ corresponding to the maximum
eigenvalue of that matrix.

4.For k = 2,3, -+, p, find the k-th unit vector c_i'k as the
eigenvector of
k=1
I_Zd]dl Z(d YL) YLYL
j=1 LENn
corresponding to the maximum eigenvalue of that
matrix. The output is an orthonormal set of all vectors
that maximize the kurtosis{dl, dy, -, dp}.
5.Find the projectionz; = d'y;. Determine the

minimum amount of variation that we want, defined
by the new variablez.
6. Compute the distancezto center point,zero(p).

III. THE ILLUSTRATION OF IDENTIFYING AN ANOMALOUS
OBSERVATIONS USING KURTOSIS PROJECTION APPROACH

To illustrate the identification of an anomalous observations
using kurtosis projection in the manner described in Section II,
we generate a small dataset of sizenfrom a mixture model
(1 = &N, (11, %) + €N, (fi,, ). For this purpose, we setn =
200andp = 8. We have three experiments with small and
moderate proportion of contaminationse = 0.01, e = 0.05, and
e = 0.15.
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Fig. 1. Outlier labeling using kurtosis projection with very
small contamination
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Fig. 2. Outlier labeling using kurtosis projection with small
contamination
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Fig. 3. Outlier labeling using kurtosis projection with moderate
contamination

Figures 1, 2, and 3 show outlier labeling using kurtosis
projection with very small, small, and moderate percentage of
contamination in a dataset. Outlier labeling can be well
identified by Kurtosis projection only for 1% contamination
data. The process of identification failed on a moderate
percentage of data contamination. The projection could be
heavily distorted by the presence of outliers.

Our projection method is faster than ideas on Pena and
Prieto’s [3] but it has a good performance only for a small
contamination data. It is different with Pena and Prieto’s work.
To improve the performance we introduce ‘Robust Kurtosis
Projection’.

[V. ROBUST KURTOSIS PROJECTION

Exploratory projection pursuit is a technique for finding
interesting direction in low p-dimensional space of high
dimensional, Jolliffe [4]. Projection pursuit is a tool for finding
cluster, which can be labeled as ‘unclean’ cluster or an
anomalous observation cluster. The technique gives a good
clustering result in specific case, which is an anomalous
observation hidden in a small proportion.

To improve the power against outliers we introduce a method
combining two advantages of both kurtosis projection pursuit
and robust covariance estimation, it is called as robust kurtosis
projection method.

The robust kurtosis projection algorithm is composed in two
steps. The first step is kurtosis projection step, which is
explained in the previous section. In the second step, the robust
step, we use robust minimum vector variance method.

Minimum Vector Variance (MVV) is the criteria to identify
an outlier by using the minimization of vector variance (VV)
proposed byHerwindiati et.al [2]. The estimator MVV is the
pair(Tyyy, Cyyy)giving minimum vector variance. The MVV is
the good robust measure emerged sinceDjauhari [9] proposed
the new multivariate dispersion that is vector variance (VV).

Suppose that()? - T)’C"l()-(' — T) =d?s an arbitrary
ellipsoid. Let A4,45,-+,4,be eigenvalues of Cyyy, vector
variance (VV) is formulated as Tr(Cfyy) = 22 + A3 + -+ 22.
datasetX = {X},X,,~+,X,} of p-variate
observations and let H € X.Suppose Tyyyand Cyypare MVV

estimator for the location parameter and covariance matrix. This
two estimators are determined based on the setH consists ofh =

Consider a

n+p+1 . . - . ..
ITJ data which give covariance matrix Cpypyof minimum

Tr(C#yy)among all possible sets of h data. Therefore,
1 4
Tyuyy = % Z X;
X;€H

1 -y = /
Cuvy = H Z (Xi - vav)(Xi - TMVV)

)?l'EH

(22)

(23)

TyyyvandCyyyare affine equivariant property.
The algorithm of Robust Kurtosis Projection is divided into
two stages,

Algorithm 4.1: Robust Kurtosis Projection

Stage 1
Find the orthonormal set of all vectors that maximize

the Kkurtosis {&1,&2,---,d,,}(see the algorithm in
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Section II).

Stage 2

Identify the anomalous observations; labeled outliers;
by using the algorithm:

1. Determine input data

2. Let H,qbe an arbitrary subset containing h =
[n+p

Jdata points. Compute the mean vectorX Hota
and covariance matrix Sy ,.of all observations
belonging toH,,;4. Then compute,

Hold(l) - (X XHold) SHold (X XHold)

foralli = 1,2,---,n
3. Sort these distances in increasing order,

df,, (M) < df,, (m(2)) < - < dfy, ()

4. DefineH,,,,

= {)?7((1)' }?H(Z)' ] Xﬂ(h)}

5. Calculate Xy, , Sy, and dZ__ (i)

6. IfTr(Sf ,,) =0, repeatsteps I to 5.
If Tr(S%,,,) = Tr(S%,,,)- the process is stopped.

Otherwise, continue until k-th iteration ifTr(S2) =
Tr(S%) = - > Tr(S2) = Tr(S2,,)

7. Ildentify the labeled outlier by using robust MVV
distance

V. THE ILLUSTRATION OF LABELED OUTLIERS PROCESS USING
ROBUST KURTOSIS PROJECTION

In this section, we illustrate the good performance of robust
kurtosis projection to separate the anomalous observations,
which are hidden in moderate, high, and very high proportion or
percentage in a dataset.

In the previous section, we see that kurtosis projection failed
to identify the labeled outliers on a moderate percentage of data
contamination. The projection is not robust against the outliers.

To indicate the power of robust kurtosis projection method,
we use the same simulation data in Section III. We generate a
mixture model (1 — €)N, (i1, ) + N, (i, £) of size n = 200,
p =8 with a moderate, high, and very high percentage
contaminationge, which are 20%, 30%, and 55% of
contaminated data.

It is surprising to find that the algorithm of robust kurtosis
projection has a good performance to identify the anomalous
observation hidden in a moderate, high, and very high
percentage of contamination datas. As seen on Figure 6, the
contamination can still be well detected though the percentage

is very high (55%).
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Fig. 4. Robust kurtosis projection of outlier labeling with
moderate contamination
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Fig. 5. Robust kurtosis projection of outlier labeling with high
contamination
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Fig. 6. Robust kurtosis projection of outlier labeling with very
high contamination

VI. REMARKS

Robust kurtosis projection has a good performance and robust
to detect data contamination in a low, moderate, high even very
high percentage. This method has been used and developed for
multivariate outlier labeling and its application.
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