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Abstract—Outlier labeling can be considered as an early procedure
to get the information of ‘suspects’. This paper introducesrobust
kurtosis projection algorithm for multivariate outlier labeling of
data set with moderate, high and very high percentage outlier. The
algorithm works in two stages. In the first stage, we propose a
pro jectivn approach to findthe orthonormal set of all vectors that
maximize the kurtosis of the projected standardized data. In the
second stage, we estimate robust covariance matrix minimizing
vector variance to label high dimensional outliers. In this stage, we
use the robust estimator on the lewer-dimensional data space to
identify the suspected anomolous observations. The simulation
experiments reveal that theintroduced algorithm has a good
performance to identify an anomalous observation hidden in a
mudcrate, high, and very high percentage of contamination data
and it seems to work well in data analysis.
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. INTRODUCTION

utlier detectionis one of the basic problems of data mining.

Outlier detection has the important role in modeling,
statistical inference, and even data processing because outlier
can lead to model misspecification, biased parameter estimation
and poor forecasting. Outlier detection has also extensive use in
wide variety of computer science applications, such as intrusion
detection, image delection, content-based image retrieval, and
classification of remote sensing data.

Awareness on outlier occurrence had emerged since early
XVI century. It was when Francis Bacon on 1620 wrote about
the importance to know phenomenon of nature deviations, cited
by Werner [l10].Studies on outlier detection have been
developed for centuries. Thompson [16] proposed statistics test
for univariate data in form of ratio between deviation of every
obscrvation to the mean and standard deviation of sample. Wilks
[14] introduced a method of outlier testing for multivariate data
based on the ratio of volume of aparallelotop. Rousseeuw [12]
introduced the minimum volume ellipsoid(MVE) to estimate
location parameters and covariance matrices as measure of
outlierdetection. Rousseeuw and van Driessen [13] introduced
the fast minimum covariance determinant(FMCD) for the same
future goal. A criterion for robust estimation of location and
covariance matrix for outlier labeling based on minimum vector
variance (MVV) was also propesed byHerwindiati etal

[2).Various techniques on identification of outliers
proposed, one of them is outlier labeling.

The outlier labeling can be considered as the early procedure
to get the information of “suspeets™. The aim of outlier labeling
is o flag observations as possible outliers for further
investigation, lglewiczand Hoglin [1]. The preliminary
information on the number and location of outlier is able to help
in formally identifying the potential outliers.

Authors have proposed many definitions for an outlier with
seemingly no universally accepted definition. This paper uses
the famous definition given by Baret and Lewis [15] that
outlier to be one or more observations, which are not consistent
among others.

Numerous outlier detection techniques have been proposed in
the data analysis. Our paper presents a new technique o label
outlier. The procedure combines two advantages of both
kurtosis projection pursuit and robust covariance estimation.
The goal of projection pursuit is 1 use the data to find low (one,
two, or three) dimensional space providing the most revealing
views of the full dimensional data. Robust statistics deals with
deviations from the assumptions of normality, linearity, and
independence stick on the classic estimation methods frequently
are not satisfied, see Huber[l 1]. Robust statistics is a convenient
modern way of summarizing results when we suspect that they
include small proportion of outliers.

The interesting properties of kurtosis projection pursuit and
the powerful of robust estimation tend us to introduce the new
measure for multivariate outlier labeling of dataset with
moderate, high, and very high percentage outlier.

Our algorithm works in two stages. In the first stage, we
propose the projection approach finding the orthonormal set of
all wvectors that maximize the kurtosis of the projected
standardized data. This approach improves on the slow
convergence rate proposed byPena and Prieto[3]. In the second
stage, we estimate robust covariance matrix minimizing vector
variance (MVV) to label high dimensional outliers. In this stage
we use the MVV estimator on the lower-dimensional data space
from kurtosis projection o indentify the suspect anomalous
observations.
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IIl. THE ALGORITHM OF KURTOSIS PROJECTION APPROACH

Projection pursuil; Friedman [5]; is a technique aiming at
identif ying low-dimensional projections of data that reveal
interesting structures. The framework of projection pursuit is
formulated as an optimization problem with the goal of finding
projection axes that minimize or maximize a measure of interest
called projection index.

Kurtosis can be formally defined as the standardized fourth
population moment about the mean,

B —u)t o g
SRR o
whereE is the expectation,u®is the fourth moment about the
mean, and ois standard deviation. The role of kurtosis is a
measure of normality; in issues of robustness, outliers, and
bimodality.

Let X = (i, %;, -, ¥,,),be a dara matrix of sizen X pas the
obscrvation result ofp variables ton individual objects andda
unit vector inlP. The orthogonal pro jection of each observation
result on o one-dimensional space spanned by disy; =d'%,

Write the projected data as Y = (), y2, =, ¥a) The kurtosis
of the projected data is formulated as

_zhe ot ©)

wheret = %z:'EN,‘}’[ and s? = iEfENﬂ[yi — t)are the sample
mean and the sample variance of the data¥ respectively. It is
noted that s* is the square of s* and N ,is the set of all natural
numbers less than or equal ton.
Centering and scaling transformation ¥ gives a new dataZ =
(2,23, 1 Zn), where for alli € N,,,
=L e -
A Since the sample mean ofZis0 and the sample

= ;‘s-‘.

variance ofZisl1, the kurtosis of Zis formulated as:

1
- 4
k=7 Y2 ®
[ERpy
Define the sample meant and the covariance matrix$ of the

data matrixX as:
e 2
t= H E Xt (4)

Z(Ei -E)E - ) (5)

1 (@& -9
)

Consider the objective functionf defined as
B 1 ' 33
f(d) =+ Z(d)ﬂ - Metu21) @)
{EM,

whered is the Lagrange multiplier. The first derivative off and
setting it o be zero results:

8 LS§ ooty oad
2@ n L 4(d'y,) ¥ —2ad = ®)
et bt s
;';[d)’f] Yivi 'd=5ff (%)
LENR

Wriie%a;xl_ We see thatk,s the eigenvalue of
. 2 2

%Z[.,,,__-"(d')'?[] y;¥anddis the coresponding eigenvector

Multiplying the last equation byd'from the left results

(10)

M, =;Z @) 55! an

corresponding to the maximum eigenvalue of that matrix. We
will call such eigenvector byrfl_ In order w0 obtain the second
unit vectord that maximizesK and orthogonal to&,, we have to
maximize the objective functionf that is redefined as

" il 3 4 a4, 5 5
@) =2 (@5 - (dd-1)-2,dd,

{eNy

(12)

whered;andAare the Lagrange multipliers. The first derivative
of f and setting it to be zero results,

df 1 423 = -
=== > 4(d7) 5~ 20ad — Aody = 0 (13)
iEfip
1 4 .y3. Az Ao
;Z(d V) i di=5d a4
1Ny

"J\;‘hﬁrc}%1 is the kurtosisK. Writci—las Kk Now, multiplying byr:z'l
from the left results
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d1;Z(dJﬁ') Vi =7 didy = Kadid (15)
€Ny
1
= 1 .——~ 16)
= (@5)’'&3 0 (
iENy
A
== (@5.) 5, 17)
(
:EFJ,l
So we have
1 .
;Z(d )i ——Z(d ¥) diidy = k,d (18)
= [ENp
(1-&d)= Y (@5)'55¢ |d=rd (19)
icMy

The second unit vectord that maximizesK and orthogonal

loEJ is the eigenvector of
T I 1 P
M, = (I -dﬂi;)EZ(d i) Yidi (20)

{Efy
corresponding to the maximum eigenvalue of that matrix. We
will call such eigenvector by&zl We can verify that for 2 £ k <
p, dis the eigenvector of the matrix

k=1

+ 4 \1 T By

My = -’_Zdjd} ;Z(d}';) i
j=1

ieN,

(21)

corresponding to the maximum eigenvalue of that matrix.

The ouwtlier labeling can be considered as the early procedure
0 get the information of the “suspects” This paper use
projection of maximize kurtosis coefficient 1o separate
suspected data, Our proposed algorithm is inspired by Pena and
Pricto’s work [3]. Pena Prieto proposed the projection of data
on p-orthogonal axis maximizing kurtosis. Their projection
pursuit is not easy for large dataset and the computational
difficulties are formidable.

We introduce the kurtosis projection approach for the initial
step of our proposed method that is ‘Robust Kurtosis Pro jection’
to label outliers on multivariate data case. The projection
algorithm is written as,

Algorithm 2.1: Finding p unit vector that maximizes |
the kurtosis

Inpur: matrix dataX = (%, Xy -
Prucess:.

,%,) of sizen x p

I. Compute the sample meant and the

covariance matrix S of X.

sample

€0

5" i e
F== P B
n
ey,
1
s:—z % -
1S & - -
[ERy

2. Standardize the matrix dataXsuch that the projected
data has mean 0 and variance 1.

ji = S7H(E - )

.Find the first unit vectord; as the eigenvector of

w

iZf;n-,,(&'?.-]zjif}‘f;' corresponding to the maximum
eigenvalue of that matrix

Fork =23, -~
eigenvector of

,p, find the k-th unit vector dj, as the

k=1
3
I—Z )

corresponding to the maximum eigenvalue of that
matrix. The output is an orthonormal set of all vectors
that maximize the kurtosis{d, dj, . d,}.

_Find the projectionz, = d'3. Determine the
minimum amount of variation that we want, defined
by the new variablez,, .

6. Compute the distancezy o center point,zero (p).

1
= Z (@) v

el

wh

iIl. THE ILLUSTRATION OF IDENTIFYING AN ANOMALOUS

OBSERVATIONS USING Ki RTOSIS PROJECTION APPROACH

To illustrate the identification of an anomalous observations
using kurtosis projection in the manner described in Section II,
we generate a small dataset of sizenfrom a mixture model
(1 —&)N,(fl;, L) + ENp(fiy L). For this purpose, we setn =
200andp = 8. We have three experiments with small and
moderate proportion of contaminationse = 0.01, £ = 0.05, and
£=0.15.
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Fig. 3. Outlier labeling using kurtosis projection with moderate
comamination

Figures 1, 2, and 3 show outlier labeling using kurtosis
projection with very small, small, and moderate percentage of
conlamination in a dataset. Outlier labeling can be well
identified by Kurtosis projection only for 1% contamination
data The process of identification failed on a moderate
percentage of data contamination. The projection could be
heavily distorted by the presence of outliers.

100

Our projection method is faster than ideas on Pena and
Pricto’s [3] but it has a good performance only for a small
contamination data. It is different with Pena and Prieto’s work.
To improve the performance we introduce ‘Robust Kurtosis
Projection’.

[V. ROBUST KURTOSIS PROJECTION

Exploratory projection pursuit is a technique for finding
interesting direction in low p-dimensional space of high
dimensional, Jolliffe [4]. Projection pursuit is a tool for finding
cluster, which can be labeled as ‘unclean’ cluster or an
anomalous observation cluster. The technique gives a good
clustering result in specific case, which is an anomalous
observation hidden in a small proportion.

To improve the power against outliers we introduce a method
combining two advantages of both kurtosis projection pursuit
and robust covariance estimation, it i called as robust kurtosis
projection method.

The robust kurtosis projection algorithm is composed in two
steps. The first step is kurtosis projection step, which is
explained in the previous section. [n the second step, the robust
step, we use robust minimum vector variance method.

Minimum Wector Variance (MVV) is the criteria to identif'y
an outlier by using the minimization of vector variance (VV)
proposed byHerwindiati etal [2] The estimator MVV is the
pair(Typy. Caney Jgiving minimum vector variance. The MVV is
the good robust measure emerged sinceDjauhari [9] proposed
the new multivariate dispersion that is vector variance (VV).

Suppose that(f —T) C-(X —T) =d%4s an arbitrary
ellipsoid. Let A, 45 -~ ,Azbe cigenvalues of Cppyy., vector
variance (VV) is formulated as Tr(Ciyy) = 45 + 5 + - + A%,

Consider a datasetX = {X-,b.le ---,X""} of p-variate
observations and let H € X Suppose Tyyypand Cyppare MVV
estimator for the location parameter and covariance matrix. This

two estimators are determined based on the setH consists ofh =
[m-p-i—l

1
Tr(C#yy)among all possible sets of h data. Therefore,

‘ data which give covariance matrix Cyy0f minimum

1 3
Taw = B Z X
X eH
1 o > '
Covy = E Z (Xt = Taww )[X[ = Trww)

XieH

(22)

(23)

T wpvandCyyypare affine equivariant property.
The algorithm of Robust Kurtosis Projection is divided into
two stages,

Algorithm 4.1: Robust Kurtosis Projection

Stage 1
Find the orthonormal set of all vectors that maximize

the kurtosis H,. le‘--.d‘u}[scc the algorithm in
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["Section 11).

Stage 2
Identify the anomalous observations; labeled outliers;
by using the algorithm:

I. Determine input data

2. Let Hygbe an arbitrary subset containing h =
l”fﬂldata points. Compute the mean vcclorfynm
and covariance matrix Sy of all

belonging toH ;4. Then compute,

observations

dfi.,,d(i) = ()?t _)':’Hom)' Shta (X-f - XH,,“,)
fooalli = 1,2 ,n
3. Sort these distances in increasing order,
df, (1)) < df,, (@) < - < df,,, (m(n))

4. DefineHy,,, = [-’?nmnfn:z)- an(n)}

5. Calculate Xy, . Sy s and d2, ., (i)

6. [fTr{SHZ"m) = 0, repeat steps | 10 5.

IFTr(S4,...) = Tr(Sh,.,). the process is stopped.
Otherwise, continue until k-th iteration ifTr(53) =
Tr(s) = =2 Tr(S) = Tr(S%,.) '

7. Ideniify the labeled outlier by using robust MVV
distance

V. THEILLUSTRATION OF LABELED QUTLIERS PROCESS USING
ROBUST KURTOSIS PROJECTION

In this section, we illustrate the good perfarmance of robust
kuriosis projection to separate the anomalous observations,
which are hidden in moderate, high, and very high proportion or
perventage in a dataset.

In the previous section, we see that kurtosis projection failed
to identify the labeled outliers on a moderate percentage of data
coniamination. The projection is not robust against the outliers.

To indicate the power of robust kurtosis projection method,
we use the same simulation data in Section 11l. We generate a
mixwure model (1 — €)N,(d, E) + eN(f,, E) of size n = 200,
p=18 with a moderate, high, and very high percentage
coniaminatione, which are 20%, 30%, and 55% of
contzminated data.

It is surprising w find that the algorithm of robust kurtosis
projection has a good performance 1o identify the anomalous
obscrvation hidden in a moderate, high, and very high
percentage of contamination datae. As scen on Figure 6, the
conlamination can still be well detected though the percentage

101

is very high (55%).
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Fig. 4 Robust kurtosis projection of outlier labeling with

moderate contamination
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Fig. 5. Robust kurtosis projection of outlier labeling with high
contamination
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Fig. 6. Robust kurtosis projection of outlier labeling with very
high contamination

V1. REMARKS

Robust kurlosis projection has a good performance and robust
to detect data contamination in a low, moderate, high even very
high percentage. This method has been used and developed for
multivariate outlier labeling and its application.
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