

HIMPUNAN
AHLI TEKNIK HIDRAULIK INDONESIA

PROSIDING

Medan,7-9 September 2018

TEMA:

PENGELOLAAN SUMBER DAYA AIR TERPADU MENGHADAPI
TANTANGAN PERUBAHAN IKLIM EKSTREM
DAN PERCEPATAN PEMBANGUNAN INFRASTRUKTUR DI ERA DIGITAL

Prosiding Pertemuan Ilmiah Tahunan (PIT) HATHI ke-35, Medan, 7-9 September 2018.
Tema "Pengelolaan Sumber Daya Air Terpadu Menghadapi Tantangan Perubahan Iklim Ekstrem dan Percepatan Pembangunan Infrastruktur di Era Digital"
JILID 1
631 halaman, xviii, $21 \mathrm{~cm} \times 30 \mathrm{~cm}$
2018

Himpunan Ahli Teknik Hidraulik Indonesia (HATHI)
Sekretariat HATHI, Gedung Direktorat Jenderal SDA Lantai 8
Kementerian Pekerjaan Umum dan Perumahan Rakyat
Jl. Pattimura 20, Kebayoran Baru, Jakarta 12110 - Indonesia
Telepon/Fax. +62-21 72792263
http://www.hathi-pusat.org | email: hathi_pusat@yahoo.com

Tim Reviewer:

Prof. Dr. Ir. Sri Harto, Br., Dip., H., PU-SDA
Prof. Dr. Ir. Nadjadji Anwar, M.Sc., PU-SDA
Dr. Ir. Moch. Amron, M.Sc., PU-SDA
Prof. Dr. It. Suripin, M.Eng.
Dr. Ir. Ahmad Perwira Mulia Tarigan, M.SC
Doddi Yudianto, ST., M.Sc., Ph.D.

DAFTAR ISI

Sambutan Ketua Umum HATHI iii
Daftar Isi v
93. Pewilayahan Pengelolaan Air Guna Mendukung Sistem Perencanaan Jaringan Tata Air Reklamasi Rawa Pasang Surut 875-884
L. Budi Triadi dan Walyu Candraqarina
94. Model Arsitektur Pohon dan Komposisi Jenis Vegetasi dalam Perannya Mengendalikan Laju Aliran Permukaan dan Erosi 885-894
Naharuddin dan Abdul Wahid
95. Pemodelan Check Dam Tipe Terbuka untuk Penanggulangan Energi Aliran Debris pada Sungai Jeneberang 895-909
Haeruddin C Maddi1 dan Rita Tahir Lopa
96. Permasalahan Sumberdaya Air dalam Pengelolaan Terpadu WS Kapuas 910-919
Stefanus B Soeryamassoeka, R. Triweko, Doddi Yudianto, Kartini, dan Henny Herawati
97. Pengelolaan DAS Wolowona Berkelanjutan 920-929
Bernadeta Tea, Susilawati, dan Pupun Adi
98. Memprediksi Perkembangan Erosi Sub DAS Malino Daerah Aliran Sungai Jeneberang Sulawesi Selatan 930-939
Darmawan Bintang, T. Iskandar, Mustafa, Supriya Triwiyana
99. Pengelolaan DAS Sampean untuk Konservasi Sumber Daya Air 940-949
Yosi Darmawan Arifianto, Joko Mulyono, Mike Yuanita
100. Pengaruh Penerapan Bangunan Low Impact Development-Best Management Practicrs Terhadap Reduksi Limpasan Permukan di Daerah Tangkapan Air Kampus UI Depok 950-959
Luluk Azkarini, Dwita Sutjiningsih, Evi Anggraheni, Jarot Widyoko
101. Studi Pengendalian Laju Sedimentasi DAS Donan dalam Menunjang Ketahanan Energi Nasional 960-969
Arief Satria Marsudi, Agung Nugroho D.P, Ulie M. Dewanto
102. Analisis Faktor Pembatas dan Kelas Kemampuan Lahan Prospek dan Kendala Pengembangan Lahan Rawa Wilayah Kalimantan Utara. 970-979
Hasyim Saleh Daulay
103. Potensi Embung-Embung di Daerah Tangkapan Air Rawa Pening... 980-989
Suseno Darsono, Risdiana Cholifatul Afifal, dan Ratih Pujiastuti
104. Hitung Ulang Kemampuan Dam Sabo di Hilir Bendung Irigasi Gunung Nago Kota Padang, Terhadap Debit Banjir dan Menahan Angkutan Sedimen 990-999
Syafril Daus, Rifda Suryani, Zalrul Umar, Dede Suaji
105. Kajian Estimasi Waktu Tampung Efektif Bendung Talawi Kota Payakumbuh Terhadap Endapan Sedimen 1000-1009
Trinanda Rahmadani, Ade Irma Suryani, Dalrino, dan Aguskamar
106. Analisis Angkutan Sedimen di Batang Kuranji (Studi Kasus di Hulu Bendung Gunung Nago) 1010-1019
Fifi Melani, Anggi Rahmad Putra, Suhendrik Hanwar, Wisafri
107. Analisa Angkutan Sedimen Batang Lembang dan Pengaruhnya Terhadap Endapan di Danau Singkarak 1020-1029
Engla Harmi Kesla Pratiwi, Ridho Rahmanela Putra, Dalrino, Suhendrik Anwar
108. Studi Analisa Resiko Potensi Likuifaksi Tanah Timbunan Reklamasi Centerpoint Of Indonesia Berdasarkan Hasil Cone Penetration Test (CPTu) 1030-1039
Hermawan
109. Analisis Tingkat Kerentanan Lahan DAS Air Dingin Kota Padang Terhadap Bencana Terkait Akibat Perubahan Iklim dan Tataguna Lahan. 1040-1045
Revalin Herdianto, Elvi Roza Syofyan, Maryadi Utama, Seri Merona
110. Kajian Lumpur Kering PDAM Surabaya Sebagai Material Sanitary Landfill 1046-1053
Aisyah K. Sahara, Agus Santoso, Ali Masduqi, Kurdianto I. Rahman, Didik Ardianto, Falmi Hidayat, dan Raymond V. Ruritan
111. Pengelolaan Daerah Tangkapan Hujan dan Pemberdayaan Masyarakat Sebagai Bentuk Pengelolaan DAS Terpadu di DAS Brantas 1054-1063
Nevi Hidayati, Oky W. Buana, dan Erwando Rachmadi
112. Efektifitas dan Efisiensi Embung PSA dalam Pelaksanaan Konstruksi, Konflik Sosial dan Pemanfatan Air 1064-1073
Bambang Risharnanda, Fauzi Idris, dan Sri Purwaningsih
113. Pengaruh Longsor Akibat Gempa Terhadap Kapasitas Penampang Sungai pada Batang Mangor Kabupaten Padang Pariaman 1074-1084
Tessa Elvira, Arralimat Taufik, Sadtim3, dan Indra Agus
114. Zonasi Kontribusi Erosi Permukaan Terhadap Potensi Sedimen di DAS Konaweha Ws Lasolo - Konaweha 1085-1096
Dede Rohmat, Eka Nugraha Abdi, Arif Sidik, Soleludin
115. Dampak Perubahan Tata Guna Lahan Terhadap Besarnya Debit Banjir di Kabupaten Probolinggo 1097-1106
Cilcia Kusumastuti, Ruslan Djajadi, Edgar Adiputra Winarko, dan Evan Antonio Richard
116. Peran Bangunan Sabo dalam Pengendalian Banjir Lahar pada Sungai Togurara Gunungapi Gamalama 1107-1116
Dyalt Ayu Puspitosari dan Ika Prinadiastari
117. Pengaruh Perubahan Tata Guna Lahan Terhadap Kapasitas Reduksi Banjir Danau Sentani 1117-1126
Elroy Koyari
118. Pengendalian Aliran Debris dengan Check Dam Terbuka Berseri .. 1127-1136
Farouk Maricar, Rita Tahir Lopa, Muhammad Farid Maricar, Francie Petrus, dan Andi Mochammad Irham B
119. Analisis Sedimentasi Batang Arau dan Pengaruhnya Terhadap Pendangkalan di Pelabuhan Muara Padang 1137-1146
Tipani Ulfah Sabrina, Taufiq Hidayat, Hartati, Zahrul Umar
120. Redesain Sistem Drainase di Kawasan Universitas Lampung dengan Model Pemanenan Air Hujan Secara Terpusat 1147-1156
Ofik Taufik Purwadi, Jamaludin, dan Ahmad Zakaria
121. Sediment Transport Muara Sungai Sekanak 1157-1164
Achmad Syarifudin, Dinar Febriansyah, Hendri, Suparji
122. Model Pengelolaan Daerah Aliran Sungai Berkelanjutan di Way Sekampung 1165-1174
Mirza Nirwansyah, Cecep Kusmana, Eriyatno, M. Yanuar J. Purwanto
123. Penggunaan Pondasi Bored Pile untuk Melindungi Pilar Jembatan
Kereta Api BH. 1153 Bumiayu Dari Bahaya Aliran Debris 1175-1184
Nur Arifaini, dan Amril Ma'ruf Siregar
124. Penerapan Teknologi Bioremediasi dalam Pengendalian Pencemaran Air Permukaan DKI Jakarta. 1185-1192
Ridwan Budi Raharjo, Nur Fizili Kiffi, Bambang Priadie, Eka Siwi Agustiningsih4 Eko Winar Irianto
125. Penanganan dan Pengelolaan Sedimentasi di DAS Asahan Hulu.... 1193-1202 Ulie M Dewanto, Shony Heriyono, Irfan Ferdiantana
126. Perbaikan Bantaran Sungai Secara Eko-Hidraulik untuk Menanggulangi Banjir di Sungai Lae Soraya Kota Subulussalam. 1203-1212
Ziana, Azmeri, Lidya Fransiska
127. Tinjauan Pemasalahan dan Penanganan dalam Revitalisasi Danau Maninjau 1213-1220
Bambang Istijono, Abdul Hakam, Maryadi Utama, Ali Rahmat, Shafira R Hape
128. Sistem High Level Diversion (Hld) pada Wilayah Sungai Limboto BolangoBone Sebagai Upaya Mengatasi Kekurangan Air dan Pengendalian BanjirKota Gorontalo Serta Pelestarian Danau Limboto1221-1230Herryan Kendra Kaharudin, Najlawati Laitifah Syazwani,-dan Khoirunnisa Nur Amalina
129. Kajian Penanganan Longsoran Tanggul Sungai Pemali di Desa Tengki, Kecamatan Brebes, Kabupaten Brebes 1231-1240
Prasetyo Budie Yuwono dan Lukito
130. Analisis Pendimensian Bronjong pada Tebing Sungai Bagian Hulu Desa Meunasah Buloh, Kabupaten Aceh Barat 1241-1250
Meylis Safriani dan Dewi Purnama Sari
131. Aplikasi System Analysis pada Pengelolaan Air Danau Toba Provinsi Sumatra Utara 1251-1260
Makmur Ginting
132. Analisis Kinerja Kolam Detensi Ujung Gurun Sebagai Pengendali Banjir 1261-1270
Ramadhatul Hidayat, Junaidi, Ahmad Junaidi
133. Pemanfaatan Lubang Bekas Tambang (Void) Sebagai Sumber Air pada Pit Jupiter PT Kaltim Prima Coal 1271-1280
Kris Pranoto, Agung Febrianto, MZ Ikhsan, Eko Wahyudi, dan Jajat Sudrajat
134. Pengaruh Aliran Bersedimen Terhadap Tinggi Muka Air Banjir Sungai Tondano 1281-1286
Liany A.Hendratta, Isri Mangangka, Sukarno, Malinda Kamase, Freddy Simboh, dan Stevanny Kumaat
135. Studi Tingkat Pengaruh Parameter Aliran Terhadap Kapasitas Intake 1287-1295
Bambang Bakri, Irwansyah Renreng, Farouk Maricar, dan Saleh Pallu
136. Menentukan Koefisien Kekasaran Manning (N) Pasangan Batu dengan Finishing (Siaran) Berdasarkan Kuantifikasi Kekasaran Hidrolis 1296-1304
I Wayan Suparta, Nadjadji Anwar, Umboro Lasminto
137. Analisis Laju Sedimentasi untuk Merumuskan Konsep Penambangan Pasir Yang Berkelanjutan di Sungai Konweha-Sultra 1305-1314
Dede Rohmat, Eka Nugraha Abdi, Wagiyo, Piwin Andono
138. Pemanfaatan Rongga Bekas Tambang Pit-J Sebagai Pengendali Banjir dan Sumber Air Baku 1315-1324
Zakaria Al Ansor, Yudha Febriana, Santosa, dan Ibadi Zalfatirsa
139. Evaluasi Rencana Pembangunan Sabo Dam di Sungai Matakabo, Kabupaten Seram Bagian Timur 1325-1332
Ruslan Malik dan Anto Henrianto
140. Restorasi Sungai dalam Pengelolaan Sumber Daya Air 1333-1342
Happy Mulya, Robert J Kodoatie, dan Devinta Elga Traulia
141. Tinjauan Pola Pengelolaan Sumber Daya Air Terpadu di Kabupaten Toraja Utara 1343-1352
Reni Oktaviani Tarru, Wa Ode Zulia Prihatini, Ermitha Ambun Rombe Dendo
142. Analisis Kinerja Sungai Ciliwung Pasca Normalisasi untuk Melalukan Banjir dengan Bantuan HEC-GeoHMS 1353-1360
Evi Anggraheni, Dwita Sutjiningsih, M. Luthfi Naufal, Jarot Widyoko, Anggia Satrini
143. Pemanfaatan Teknologi Plasma untuk Menurunkan Beban Pencemaran Sungai dengan Pengolahan Limbah Domestik Menggunakan Reaktor Plasma Dielectric Barrier Discharges (DBD) 1361-1372
Tunggul Sutanhaji, Azmeri, Riska Anindita Savitri
144. Studi Daya Dukung Lingkungan Hidup Ekosistem Danau Toba 1373-1382
Kurdianto I. Rahman, Lukman, Didik Ardianto, Falımi Hidayat, dan Raymond V. Ruritan
145. Evaluasi Kelayakan Prasarana Kolam Retensi di Kota Palembang 1383-1392 M. Baitullah Al Amin, Febrinasti Alia, dan Amelia Dyharanisha
146. Aliran Pemeliharaan Sungai 1393-1402
S. Amirwandi, Indratmo Soekarno
147. Studi Debit Angkutan Sedimen Sungai Brantas di Laboratorium 1403-1410
Wati A.Pranoto, Hari Anggeriksari
148. Simulasi Pergerakan Alur Sungai dengan Pola Berkelok-kelok (Meander) di Daerah Perkotaan 1411-1420
Siti Murniningsih
149. Membangun Ketahanan Air Melalui Pembangunan Embung di Wilayah Perdesaan 1421-1430
Muhammad Rizal, Tina Laksmi Widayati
150. Implementasi Kebijakan Pengelolaan Sempadan Danau Rawa Pening 1431-1440
Kalmah
151. Strategi Optimalisasi Kelembagaan Pengelolaan Sumberdaya Air 1441-1450
Runi Asmaranto, Ruslin Anwar, Indah Dwi Qurbani
152. Efektivitas Pendayagunaan Kelembagaan Pengelolaan Sumber Daya Air pada Wilayah Sungai Mahakam 1451-1460
Diyat Susrini Widayanti, Kumarul Zaman, Eko Walyyudi, Ari Murdhianti, Nely Mulyaningsih
153. Pengelolaan Kewenangan Daerah dalam Mengelola Daerah Aliran Sungai Propinsi Riau 1461-1466
Trimaijon
154. Pelaksanaan Operasi dan Pemeliharaan Sistem Irigasi yang Adaptif Terhadap Program Irigasi Partisipatif Terpadu dan Teknologi 1467-1472
Andreas Gustiniady Ahas, Muhammad Asdin Thalib, Pathurachman, Dadang Ridwan, Djito, Andreas Tony Pakpahan
155. Partisipasi Masyarakat dalam Mengelola Kolam Regulasi Nipa Nipa untuk Mengurangi Banjir di Makassar 1473-1480
Muhammad Firdaus, Subandi, dan Indra Jaya Kusuma
156. Penguatan Kelembagaan Forum Masyarakat Peduli Sungai Wolowona 1481-1488
Susilawati, Indah Wahyuning Tyas, Christiana Sri Murni, dan Nando Watu
157. Studi Pembinaan Kemitraan Pemerintah, Perguruan Tinggi dan Komunitas Peduli Sungai di Wilayah Sungai Jeneberang 1489-1495
Harun Effendy, Muhammad Hasbi, dan Muhammad Firdaus
158. Metode Participatory Rural Appraisal (PRA) dalam Pelaksanaan Pengendalian Banjir Sungai Wanggu, Kendari, Sulawesi Tenggara 1496-1505
Fajar Baskoro Wicaksono, Arbor Reseda, dan Eka Nugraha Abdi

STUDI DEBIT ANGKUTAN SEDIMEN SUNGAI BRANTAS DI LABORATORIUM

Wati A.Pranoto ${ }^{1 *}$ dan Hari Anggeriksari ${ }^{2 *}$
${ }^{1}$ Program Magister Teknik Sipil, Universitas Tarumanagara
${ }^{2}$ Program Studi Teknik Sipil, Universitas Tarumanagara
*watip@ft.untar.ac.id

Abstract

Intisari Sungai Brantas adalah sebuah sungai di Jawa Timur yang merupakan sungai terpanjang kedua di Pulau Jawa setelah Bengawan Solo. Sungai Brantas tidak hanya mengalirkan air, tetapi membawa sedimen yang ada didalam aliran air yang berasal dari hasil erosi. Beberapa ahli telah mengemukakan rumus dan pendekatan untuk menghitung besarnya debit angkutan sedimen diantaranya persamaan Engelund Hansen, Ackers - White, dan Yang. Penelitian ini difokuskan pada angkutan sedimen total. Untuk meneliti debit angkutan sedimen total dari Sungai Brantas ini dilakukan penelitian Laboratorium Hidrolika dan Laboratorium Mekanika Tanah. Tujuan dari penelitian ini adalah menganalisis hasil debit yang didapat dari laboratorium dan membandingkannya dengan pendekatan rumus Engelund Hansen, Ackers - White, dan Yang. Hasil yang didapat dari analisa laboratorium diperoleh total angkutan sedimen sebesar $0,049514124 \mathrm{~kg} / \mathrm{m}-\mathrm{s}$, metode Engelund Hansen sebesar $0,00113411 \mathrm{~kg} \mathrm{~m}$-s, metode Ackers - White sebesar $6,89 \times 10-14$ $\mathrm{kg} / \mathrm{m}-\mathrm{s}$, metode Yang sebesar $0.016650652 \mathrm{~kg} / \mathrm{m}-\mathrm{s}$

Kata kunci : Brantas, angkutan sedimen, studi laboratorium.

Latar Belakang

Sungai Brantas adalah sebuah sungai di Jawa Timur yang merupakan sungai terpanjang kedua di Pulau Jawa setelah Bengawan Solo. Sungai Brantas bermata air di Desa Sumber Brantas, Kecamatan Bumiaji, Kota Batu, yang berasal dari simpanan air Gunung Arjuno, lalu mengalir ke Malang, Blitar, Tulungagung, Kediri, Jombang, Mojokerto. Kali Brantas mempunyai Daerah Aliran Sungai (DAS) seluas $11.800 \mathrm{~km}^{2}$. Panjang sungai utama 320 km mengalir melingkari sebuah gunung berapi yang masih aktif yaitu Gunung Kelud. Curah hujan rata-rata mencapai 2.000 mm per-tahun dan dari jumlah tersebut sekitar 85% jatuh pada musim hujan. Sungai Brantas memiliki fungsi yang sangat penting bagi Jawa Timur mengingat 60% produksi padi berasal dari areal persawahan di sepanjang aliran sungai ini. Akibat pendangkalan dan debit air yang terus menurun sungai ini tidak bisa dilayari lagi. Fungsinya kini beralih sebagai irigasi dan bahan baku air minum bagi sejumlah kota di sepanjang alirannya.
Sepanjang aliran Sungai Brantas dan anak sungai-anak sungai terdapat bendungan dan waduk serbaguna, yaitu Waduk Selorejo di Ngantang (Kabupaten Malang), Waduk Sengguruh dan Karangkates di Kepanjen (Kabupaten Malang), Waduk Lahor yang airnya dialirkan ke Waduk Karangkates melalui terowongan bawah-
tanah, Waduk Wlingi-Raya dan Waduk Kesamben di dekat Blitar, dan Waduk Widas di dekat Nganjuk. Namun pada aliran Sungai Brantas terjadi pendangkalan.
Dalam proses angkutan sedimen banyaknya sedimen yang terangkut di daerah sungai ditentukan oleh kecepatan aliran. Selain dipengaruhi oleh kecepatan aliran, angkutan sedimen dasar (Bed Load Transport) maupun sedimen melayang (Suspended Load Transport) dipengaruhi juga oleh panjang sungai, kemiringan dasar, penampang sungai, kedalaman sungai dan berbagai parameter lainnya yang berpengaruh terhadap proses sedimentasi yang terjadi.
Hasil debit angkutan sedimen dari aliran Sungai Brantas dapat diperoleh dengan melakukan pengukuran pengangkutan sedimen di laboratorium. Dengan beberapa kecepatan aliran yang berbeda, sehingga dapat diketahui volume sedimen percobaan dapat dilakukan dari variasi kecepatan tersebut.

Batasan Masalah

Batasan masalah pembahasan yang di analisa dalam penelitian ini yaitu Studi hanya dilakukan pada sampel sedimen Sungai Brantas, Studi menggunakan alat Flum Sirkular di Laboratorium Hidrolika Jurusan Teknik Sipil Universitas Tarumanagara, dan Pendekatan rumus hanya dengan pendekatan Ackers - White, Engelund - Hansen, dan Yang.

Rumusan Masalah

Rumusan masalah yang dikemukakan pada penelitian ini adalah mengidentifikasi debit angkutan sedimen sungai Brantas dengan beberapa variasi kecepatan pada studi laboratorium, hasil debit angkutan sedimen dari pendekatan Ackers - White, Engelund - Hansen, Yang dan perbandingan hasil laboratorium dan hasil pendekatan rumus

Tujuan Penelitian

Tujuan dari penelitan ini adalah mengetahui debit angkutan sedimen dari percobaan laboratorium dan pendekatan Ackers - White, Engelund - Hansen, dan Yang.

Kajian Pustaka

Penelitian sebelumnya dengan sedimen sungai Serayu meneliti angkutan sedimen dasar dengan persamaan Duboys, Shield, dan Schoklitsch mendapatkann persamaan Shield cocok untuk kecepatan tinggi dan Schoklitsch cocok untuk kecepatan rendah (Pranoto dan Sumanton, 2017) Dalam penelitian ini meneliti angkutan sedimen total dan memakai Transport Functions Based on the Power oleh Engelund dan Hansen (1972), Ackers dan White (1973), Yang (1972) dalam Chih Ted Yang, 1996. Dalam hal ini setiap pendekatan dan rumus yang telah dikembangkan oleh para ahli hidrolika tentang angkutan sedimen mempunyai nilai lebih dan kurang jika dibandingkan satu sama lain. Hal tersebut sangat menarik untuk dibahas karena semakin banyaknya penelitian yang dilakukan dalam bidang angkutan sedimen.

Engelund dan Hansen (1972) mengaplikasikan konsep energi Bagnold dan prinsip kesamaan untuk mendapatkan fungsi transpor sedimen.

$$
\begin{equation*}
\mathrm{qt}=\emptyset \sqrt{\left(\gamma s\left(\frac{\gamma s-\gamma}{\gamma}\right)(g)\left(d^{3}\right)\right)} \tag{1}
\end{equation*}
$$

dimana:
qt $\quad:$ Debit angkutan sedimen(kg/m-s).
γ dan $\gamma \mathrm{s}$: Berat jenis air dan berat jenis sedimen($\mathrm{kg} / \mathrm{m} 3$).
G \quad Percepatan gravitasi $(\mathrm{m} / \mathrm{s} 2)$.
d : Diameter median butiran sedimen (mm).
$\Phi \quad:$ Potensi kecepatan.
Rumus angkutan sedimen dasar milik Engelund dan Hansen harus diaplikasikan pada aliran dengan dasar pasir sesuai dengan prinsip kesamaan. Namun, Engelund dan Hansen menemukan bahwa rumus ini dapat diaplikasikan pada aliran dengan dasar pasir dan rezim aliran atas dengan ukuran partikel lebih dari $0,15 \mathrm{~mm}$ tanpa perbedaan yang serius dari teori.
Didasari dari konsep energi Bagnold, Ackers - White (1973) mengaplikasikan analisis dimensi untuk menyatakan mobilitas dan banyaknya transpor sedimen dalam hal dari beberapa parameter tidak berdimensi. Mereka mendalilkan tegangan geser adalah satu satunya bagian dalam dasar saluran yang efektif dalam menyebabkan pergerakan sedimen kasar. Sementara sedimen melayang mendominasi, dan tegangan geser total efektif dalam menyebabkan pergerakan sedimen .Persamaan Acker - White (Yang, 1996) tentang angkutan sedimen dapat ditulis sebagai berikut:

$$
\begin{equation*}
\frac{\mathrm{Ggr} \mathrm{~d}(\gamma s / \gamma)}{D\left(\frac{U *}{V}\right)^{n}}=\mathrm{X} \tag{2}
\end{equation*}
$$

dimana:
X : Konsentrasi sedimen (ppm).
$\gamma \mathrm{s}$ dan γ : Berat jenis sedimen dan berat jenis air $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$.
D : Kedalaman air (m).
n : Eksponen transisi.
$\mathrm{U}^{*} \quad:$ Kecepatan geser $(\mathrm{m} / \mathrm{s})$.
V : Kecepatan air $(\mathrm{m} / \mathrm{s})$.
d : Diameter median butiran sedimen (mm).
Yang (1979) mengatakan bahwa angkutan sedimen dasar dapat dihitung dengan rumus.
$\log C t s=5,165-0,153 \log \frac{\omega d}{v}-0,297 \log \frac{\nu \cdot}{\omega}+\left(1,780-0,360 \log \frac{\omega d}{v}-0,480 \log \frac{v \cdot}{\omega}\right) \log \frac{v s}{\omega}$
dimana:
Cts : Konsentrasi sedimen (ppm).
V : Kecepatan aliran (m / s).
v : Viskositas kinematik air ($\mathrm{m} 2 / \mathrm{s}$).
d : Diameter median butiran sedimen (mm).
$\omega \quad$: Fall velocity $(\mathrm{m} / \mathrm{s})$.
U* : Shear Velocity (m / s).
$\mathrm{S} \quad$: Kemiringan dasar sungai.

Metodologi Studi

Studi ini dilakukan dalam beberapa tahap yang dapat terbagi menjadi (Gambar.1):

1. Studi literatur
2. Persiapan sampel laboratorium
3. Percobaan laboratorium
4. Analisa data laboratorium dan pendekatan rumus
5. Analisa
6. Kesimpulan

Hasil Penelitian dan Pembahasan

Sampel sedimen Sungai Brantas yang digunakan dalam percobaan pada flum sirkular merupakan hasil yang didapat dari metode sieve analysis dan hidrometri. Kedua percobaan ini dilakukan untuk mengetahui gradasi dari sedimen pada Sungai Brantas. Dari hasil data yang ditunjukkan pada Gambar 2, didapat partikel yang paling banyak dari sampel lumpur Sungai Brantas.
Hasil perbandingan antara debit air terhadap debit angkutan sedimen dasar dapat dilihat pada Gambar 3. Dapat disimpulkan bahwa semakin besar kecepatan aliran, maka debit air akan semakin besar, dan diikuti dengan peningkatan jumlah debit angkutan sedimen dasar.

Gambar 2. Grafik hasil analisa sedimen Sungai Brantas

Gambar 3. Perbandingan debit air terhadap debit angkutan sedimen dasar (Q terhadap Qb Penelitian Laboratorium)
Hasil perbandingan antara debit air terhadap debit angkutan sedimen melayang dapat dilihat pada Gambar 4. Dapat disimpulkan bahwa semakin besar kecepatan aliran, maka debit air akan semakin besar, dan diikuti dengan peningkatan jumlah debit angkutan sedimen melayang

Gambar 4. Perbandingan devit air terhadap debit angkutan sedimen melayang (Q terhadap Qb Penelitian Laboratorium)

Berdasarkan data diameter partikel dan dari percobaan laboratorium dapat dihitung besarnya debit angkutan sedimen total (qt) dengan menggunakan rumus Ackers White. Hasil analisa terdapat pada Gambar 5.

Berdasarkan data diameter partikel dan dari percobaan laboratorium dapat dihitung besarnya debit angkutan sedimen total (qt) dengan menggunakan rumus EnglundHansen. Hasil analisa dengan menggunakan persamaan Englund-Hansen ditunjukkan pada Gambar 6.

Gambar 6. Grafik Q terhadap Qt Engelund-Hansen
Berdasarkan data dari percobaan di laboratorium dapat dihitung besarnya debit angkutan sedimen total (Qt) dengan menggunakan pendekatan rumus Yang. Hasil analisa menggunakan persamaan Yang ditunjukkan pada Gambar 7.

Gambar 7. Grafik Q terhadap Qt Yang

Analisa hasil debit angkutan sedimen dasar dari masing-masing sampel yang didapat dari percobaan laboratorium dibandingkan dengan hasil dari analisa rumus Engelund-Hansen, Ackers-White, dan Yang. Hasil perbandingan tersebut ditampilkan dalam grafik antara debit air terhadap debit angkutan sedimen total. Berikut hasil analisa perbandingannya:
Gambar 8 menunjukkan nilai debit angkutan sedimen total yang dihasilkan dari perhitungan Laboratorium berada di urutan paling atas.
Nilai debit angkutan sedimen total laboratorium berada di atas persamaan Yang dan lebih mendekati persamaan Yang, yaitu berada di atasnya. Dapat dilihat pada debit yang rendah, angkutan sedimen total laboratorium berada di atas persamaan Ackers - White dan Engelund - Hansen. Dan semakin besar debit air, nilai debit angkutan sedimen hasil laboratorium semakin besar menjauhi persamaan Ackers - White dan Engelund - Hansen.

Gambar 8. Perbandingan debit angkutan sedimen total penelitian langsung terhadap pendekatan rumus

Kesimpulan

Dari percobaan dan analisa yang dilakukan, makadapat ditarik kesimpulan sebagai berikut:

1. Gradasi butiran sedimen Sungai Brantas yang dipakai adalah D50 pada ukuran diameter 0.0455 mm .
2. Dari hasil percobaan laboratorium, dengan bertambahnya debit air maka debit angkutan sedimen semakin besar.
3. Dari hasil percobaan berdasarkan kedalaman, dengan bertambahnya kedalaman sampel maka kecepatan kritis yang diperlukan semakin besar.
4. Persamaan Yang paling mendekati hasil laboratorium pada debit 0,0028 $0,0030 \mathrm{~m}^{3} / \mathrm{s}$
5. Rumus Ackers - White lebih akurat bila digunakan pada kisaran diameter diatas $0,04 \mathrm{~mm}$.
6. Rumus Englund - Hansen lebih akurat bila digunakan pada kisaran diameter diatas $0,15 \mathrm{~mm}$.
7. Rumus Yang lebih akurat bila digunakan pada kisaran konsentrasi sedimen diatas 100 ppm sesuai dengan berlakunya rumus tsb.

Rekomendasi

Berdasarkan hasil penelitian yang diperoleh disarankan untuk dapat dilakukan lebih banyak lagi percobaan mengenai angkutan sedimen total agar dapat disesuaikan dengan perkembangan yang terjadi. Banyak pendekatan rumus yang telah diteliti sebelumnya dianggap tidak relevan dengan perubahan kondisi alam pada waktu sekarang. Saran untuk penelitian selanjutnya adalah diperlukan ketelitian lebih dalam menimbang maupun mempersiapkan sampel untuk mendapatkan hasil yang lebih akurat dan mempersiap kan alat yang lebih baik sehinggaaliran air yang tercipta lebih stabil.

Ucapan Terima Kasih

Terima kasih diucapkan penulis kepada semua pihak yang telah membantu dan terlibat dalam menyelesaikan penelitian ini. Berkat usaha dari saudara-saudari sekalian, penelitian ini dapat berjalan dengan lancar dan memberikan hasil yang memuaskan.

Daftar Pustaka

Djirjize Abdul Hakim F, Suyanto, Solichin. Analisis Angkutan Sedimen pada Sungai Bengawan Solo Ruas Serenan - Jurug.2015. Matriks Teknik Sipil
Maryono, A., 2005. Eko-Hidraulik Pembangunan Sungai. Magister Sistem Teknik Program Pasca Sarjana Universitas Gadjah Mada, Yogyakarta
Pranoto, Wati Asriningsih dan Lucky Sumanton, 2017, Studi Angkutan Sedimen Dasar Sungai Serayu di Laboratorium, Prosiding Konferensi Teknik Sipil Nasional 11, Jakarta
Prihatiningsih, Aniek. 2015. Petunjuk Praktikum Mekanika Tanah. Jurusan Teknik Sipil Fakultas Teknik Universitas Tarumanagara. Jakarta. Indonesia
Pramudita, Arnold.2018. "Studi laboratorium debit angkutan sedimen pada Sungai Kapuas, kecamatan Tayan, Kabupaten Sanggau, Kalimantan Barat". Skripsi. Universitas Tarumanagara Jakarta.
Sembiring, Amelia Ester. 2014. Analisis Sedimentasi di Muara Sungai Panasen.: https://ejournal.unsrat.ac.id/index.php/jss/article/view/4763
Sengupta, SM. 1994. Introduction to Sedimentology. Indian Institute of Technology.
Vanoni.VA. 1975. Sedimentation Engineering. ASCE, N.Y. USA
Wenworth, CK. 1922. Grain size classification.
Yang, Chih Ted. 1996. Sediment Transport: Theory and Practice. Singapore. McGraw-Hill.

