Fat, Joni Continuous-time random walk: exact solutions for the probability density function and first two moments. Continuous-time random walk: exact solutions for the probability density function and first two moments.
![]() |
Text
1. Upload Article - Jurnal Continous Time.pdf Download (1MB) |
Abstract
We consider decoupled continuous time random walk model with finite characteristic waiting time and approximate jump length variance. We take the waiting time probability distribution given by a combination of exponential and Mittag-Leffler function. Using this waiting time probability distribution we investigate diffusion behaviors for all the time. We obtain exact solutions for the first two moments and probability distribution for force-free and linear force cases. Due to the finite characteristic waiting time and jump length variance the model presents, for the force- free case, normal diffusive behavior in the long-time limit. Further, the model can describe anomalous behavior at the intermediate times.
Item Type: | Article |
---|---|
Subjects: | Artikel Penelitian > Fakultas Ekonomi |
Divisions: | Fakultas Teknik > Teknik Elektro |
Depositing User: | Puskom untar untar |
Date Deposited: | 30 Aug 2021 10:18 |
Last Modified: | 30 Aug 2021 10:49 |
URI: | http://repository.untar.ac.id/id/eprint/32335 |
Actions (login required)
![]() |
View Item |